skip to main content


Title: In-Situ Investigation of Resin Shrinkage in the Composite Manufacturing Environment
Cure shrinkage of the polymer matrix during the composite manufacturing process leads to residual stresses, which can adversely affect the structural integrity and dimensional stability of composite structures. In this paper, a novel approach is developed for measuring the resin shrinkage and strain evolution of an epoxy resin (EPON-862) in the composite manufacturing environment. The resin is cured in a custom-designed autoclave with borosilicate viewports, while digital image correlation (DIC) is used to analyze the strain evolution throughout the cure cycle. These processing induced strains are correlated to the cure-state using differential scanning calorimetery (DSC). The different mechanisms involved in the polymer strain evolution during composite processing are discussed.  more » « less
Award ID(s):
2001038
NSF-PAR ID:
10225002
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Composite Materials
ISSN:
0929-189X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This study successfully integrates acoustic patterning with the Two-Photon Polymerization (TPP) process for printing nanoparticle–polymer composite microstructures with spatially varied nanoparticle compositions. Currently, the TPP process is gaining increasing attention within the engineering community for the direct manufacturing of complex three-dimensional (3D) microstructures. Yet the full potential of TPP manufactured microstructures is limited by the materials used. This study aims to create and demonstrate a novel acoustic field-assisted TPP (A-TPP) process, which can instantaneously pattern and assemble nanoparticles in a liquid droplet, and fabricate anisotropic nanoparticle–polymer composites with spatially controlled particle–polymer material compositions. It was found that the biggest challenge in integrating acoustic particle patterning with the TPP process is that nanoparticles move upon laser irradiation due to the photothermal effect, and hence, the acoustic assembly is distorted during the photopolymerization process. To cure acoustic assembly of nanoparticles in the resin through TPP with the desired nanoparticle patterns, the laser power needs to be carefully tuned so that it is adequate for curing while low enough to prevent the photothermal effect. To address this challenge, this study investigated the threshold laser power for polymerization of TPP resin (Pthr) and photothermal instability of the nanoparticle (Pthp). Patterned nanoparticle–polymer composite microstructures were fabricated using the novel A-TPP process. Experimental results validated the feasibility of the developed acoustic field-assisted TPP process on printing anisotropic composites with spatially controlled material compositions. 
    more » « less
  2. Abstract

    Design and direct fabrication of high‐performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high‐speed 3D printing of high‐performance epoxy thermosets via a two‐stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h−1. It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two‐stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high‐performance and functional applications.

     
    more » « less
  3. null (Ed.)
    Thin-ply composite laminates are of interest for several applications in aerospace and other high-performance industries due to their ability to delay transverse microcracking and delamination in static, fatigue, and impact loadings. It is essential to understand the evolution of thermal residual stresses during cure to optimize the manufacturing process of thin-ply composites for deep-space applications. In this research, processing induced residual stresses in thin-ply laminates are evaluated by devising a novel in-situ experimental approach. Thin-ply prepreg laminates are cured in a specially designed autoclave with viewports with plies laid upon a flat tool and a curved tool. The curved tool configuration used in this research is designed to simulate cryogenic fuel tank surfaces. The evolution of residual stresses in terms of out-of-plane displacement is characterized using Digital Image Correlation (DIC) during the autoclave cure cycle. 
    more » « less
  4. Abstract

    3D printing of optics has gained significant attention in optical industry, but most of the research has been focused on organic polymers. In spite of recent progress in 3D printing glass, 3D printing of precision glass optics for imaging applications still faces challenges from shrinkage during printing and thermal processing, and from inadequate surface shape and quality to meet the requirements for imaging applications. This paper reports a new liquid silica resin (LSR) with higher curing speed, better mechanical properties, lower sintering temperature, and reduced shrinkage, as well as the printing process for high‐precision glass optics for imaging applications. It is demonstrated that the proposed material and printing process can print almost all types of optical surfaces, including flat, spherical, aspherical, freeform, and discontinuous surfaces, with accurate surface shape and high surface quality for imaging applications. It is also demonstrated that the proposed method can print complex optical systems with multiple optical elements, completely removing the time‐consuming and error‐prone alignment process. Most importantly, the proposed printing method is able to print optical systems with active moving elements, significantly improving system flexibility and functionality. The printing method will enable the much‐needed transformational manufacturing of complex freeform glass optics that are currently inaccessible with conventional processes.

     
    more » « less
  5. In the last few decades, fiber reinforced composites have been established as the materials of choice for lightweight applications in a large spectrum of applications ranging from aerospace, defense, and marine industries to automotive products and consumer goods. With the growing shift to sustainable resources, natural fibers, especially plant fibers, received increased interest throughout the years. Among these natural fibers, silks stand out with low stiffness and a high failure strain, unlike conventional fibers such as carbon or glass. Although gaining traction as a natural alternative reinforcement, silk still has little to no commercial uses despite its higher performance. Besides its higher mechanical properties and lightweight, silk exhibits other attractive properties such as improved flame retardancy and biodegradability. To take advantage of these features, proper fiber/matrix adhesion must be achieved. Such silk/matrix bonding can be inferred from the silk/resin affinity during composite manufacturing. In this study, the affinity/wettability of several silk/resin systems were analyzed via static contact angles using imageJ software to determine candidates for silk reinforced composite laminates with better adhesion. To this end, a combination of four silk fibers and three resin systems were investigated. The investigated silk fibers were Ahimsa, Charmeuse, Habotai, and Tussah; and the resins included a vinyl ester (Hydrex) and two epoxies (INF114 and INR). For Tussah fibers, initial contact angles were consistently one of the lowest. However, these fibers exhibited a higher contact angle over time compared to the other silk fibers studied. Conversely, Ahimsa silk fibers showed the highest initial contact angle, then quickly dropped to com-plete wetting. Habotai fibers dropped towards complete wetting quickly, however, consistently slowed considerably shortly after. Charmeuse fibers performed similarly to Ahimsa fibers with Hydrex, however was considerably slower to wetting with the other resins. Among the investigated resins, Hydrex showed the best affinity to silk fibers with the majority of the lowest initial contact angles and the fastest to complete wetting. INF114 consistently receded at a slower, albeit steady, rate until reaching complete wetting apart from Tussah. INR showed the highest initial contact angles and never reached complete wetting after an hour for two of the four silks investigated. Therefore, the best silk/resin affinity was observed for the Ahimsa and Charmeuse silk fibers and the Hydrex vinyl ester resin. In future work, silk composites with these constituents would be investigated. 
    more » « less