skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and Optimization of Manufacturing Process of Polymer Composites Through Multiscale Cure Analysis and NSGA‑II
Thermoset polymer composite structures are heavily used in the aerospace, defense, transport, and energy sectors due to their lightweight and high-performance behavior. Thermoset polymer resins require external heat for manufacturing/curing. The behavior of these polymer composite materials is highly dependent on curing process as it affects evolution of material properties as well as residual stresses and deformation. Various cure process parameters, mainly related to cure thermal cycle, need to be optimized to get the desired properties of these structures. In this paper, the polymer cure process is explicitly modeled through finite element method. Its effects at the structural level are captured by modeling thermo-chemical-mechanical analysis through multiple length scales. The multi-scale analysis is carried out by surrogate models to reduce run time. In this study, non-dominated sorting genetic algorithm II is used for multi-objective cure process optimization. The objectives are to minimize the spring-in angle and minimize the process time with achieving degree of cure above given requirement. Insights from such optimization can be utilized by product designers as well as manufacturers to take timely decisions to improve the performance of these composite structures.  more » « less
Award ID(s):
2316628
PAR ID:
10523537
Author(s) / Creator(s):
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Integrating materials and manufacturing innovation
ISSN:
2193-9772
Subject(s) / Keyword(s):
Thermoset polymer composites · Cure kinetics · Multi-scale method · Finite element analysis · Genetic algorithm · NSGA-II
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chemical shrinkage in thermosetting polymers drives residual stress development and induces residual deformation in composite materials. Accurate characterization of chemical shrinkage during curing is therefore vital to minimize residual stresses through process modeling and optimize composite performance. This work introduces a novel methodology to measure the pre- and post-gelation chemical shrinkage of an epoxy resin using three-dimensional digital image correlation (3D-DIC). Differential scanning calorimetry (DSC) is employed to calculate reaction kinetics and correlate chemical shrinkage with the degree of cure. Rheology experiments are conducted to quantify gelation and validate post-gelation. 3D-DIC post-gelation results show excellent agreement with rheology. Pre-gelation results show the effect of the in-situ curing in the proximity of constraints on the global strain behavior. This work introduced an innovative approach to characterize the chemical shrinkage of thermosets during curing, which will enable accurate residual stress prediction for enhancing thermoset composite performance and provide insight into the in-situ polymer behavior during processing. 
    more » « less
  2. Uncontrolled curing-induced residual stress and strain are significant limitations to the efficient design of thermoset composites that compromise their structural durability and geometrical tolerance. Experimentally validated process modeling for the evaluation of processing parameter contributions to the residual stress build-up is crucial to identify residual stress mitigation strategies and enhance structural performance. This work presents an experimentally validated novel numerical approach based on higher-order finite elements for the process modeling of fiber-reinforced thermoset polymers across two composite characteristic length scales, the micro and macro-scale levels. The cure kinetics is described using an auto-catalytic phenomenological model. An instantaneous linear-elastic constitutive law, informed by time-dependent material characterization, is used to evaluate the stress state evolution as a function of the degree of cure and time. Micromechanical modeling is based on Representative Volume Elements (RVEs) that account for random fiber distribution verified against traditional 3D FE analysis. 0/90 laminate testing at the macroscale validates the proposed approach with an accuracy of 9%. 
    more » « less
  3. This research investigates how reaction induced phase separation (RIPS) of thermoplastic, which occurs during glassy polymer network cure, is determined by viscosity. Utilizing high Tg engineering thermoplastics in high viscosity thermoset systems, dissolution of multiple loading levels of thermoplastic and thermoset pre-polymer conversion will be achieved through use of a high shear continuous reactor. Samples will be cured using various isothermal curing profiles and characterized for morphology type and domain size as well as rheologically to determine minimum viscosity, time to gelation, time from phase separation to gelation, and average viscosity. The influence of cure conditions, thermoplastic loading levels, thermoplastic composition, and molecular weight on structural morphology will be resolved, establishing a well-defined rheological well during cure that leads to tunable and controllable phase separated morphologies, from dispersed droplet to co-continuous. By controlling viscosity of thermoplastic dispersed network pre-polymers through phase composition, cure schedule, molecular weight, directed phase separation will be achieved. Rheological profiles will be related to resulting network structure, which will lead to the ability to control and direct complex thermoplastic filled thermoset systems to targeted unique morphologies. 
    more » « less
  4. The viscoelastic properties of carbon fiber reinforced thermoset composites are of utmost importance during processing such materials using composite forming. The quality of the manufactured parts is largely dependent on intelligent process parameter selection based on the viscoelastic and flow properties of the polymer resin. Viscoelastic properties such as the complex viscosity (η*), storage modulus (G'), loss modulus (G''), and loss tangent (tanδ) are used to determine the critical transition events (such as gelation) during curing. An understanding of the changes in viscoelastic properties as a function of processing temperature and degree of cure provides insight to establish a suitable processing range for compression forming of prepreg systems. However, tracking viscoelastic properties as a function of cure during the forming process is a challenging task. In this current work, we have investigated the effect of sample size and adhesive type on the rheological properties of a commercially available carbon fiber prepreg material. Specifically, determining the linear viscoelastic region (LVE) as a function of sample configuration and different adhesive chemistries were explored. The results suggest that the square-shaped sample geometries coupled with cyanoacrylate based adhesive are optimum for conducting rheological characterization on the carbon fiber prepreg system. 
    more » « less
  5. Thermoset polymer composites, known for their outstanding thermal, mechanical, and chemical properties, have found applications in diverse fields, including aerospace and automotive industries. These polymers, once cured, cannot be recycled, making the end-of-life management of these composites very difficult and posing an environmental challenge. Conventional recycling methods are unsuitable for thermosets, forcing their accumulation in landfills and raising environmental concerns. One possible solution to overcome this concern is to use resins or curing agents, or both, made from biodegradable materials. This study explores the fabrication and characterization of polymer composites using a commercially available green curing agent made from biomass. The composite laminates were fabricated using HVARTM (Heated Vacuum Assisted Resin Transfer Molding) process. In this process, heat pads are used to increase the temperature of both the epoxy resin and the plain weave carbon fiber laminate to a desired temperature, providing ease of flow to the resin. Small coupons were cut from the laminate using a water jet machine to study the flexural behavior of the composite in accordance with ASTM testing standards and compared with composite coupons fabricated using conventional epoxy resin. 
    more » « less