skip to main content

Title: Notes on two-dimensional pure supersymmetric gauge theories
A bstract In this note we study IR limits of pure two-dimensional supersymmetric gauge theories with semisimple non-simply-connected gauge groups including SU( k )/ℤ k , SO(2 k )/ℤ 2 , Sp(2 k )/ℤ 2 , E 6 /ℤ 3 , and E 7 /ℤ 2 for various discrete theta angles, both directly in the gauge theory and also in nonabelian mirrors, extending a classification begun in previous work. We find in each case that there are supersymmetric vacua for precisely one value of the discrete theta angle, and no supersymmetric vacua for other values, hence supersymmetry is broken in the IR for most discrete theta angles. Furthermore, for the one distinguished value of the discrete theta angle for which supersymmetry is unbroken, the theory has as many twisted chiral multiplet degrees of freedom in the IR as the rank. We take this opportunity to further develop the technology of nonabelian mirrors to discuss how the mirror to a G gauge theory differs from the mirror to a G / K gauge theory for K a subgroup of the center of G . In particular, the discrete theta angles in these cases are considerably more intricate than those of the pure gauge theories studied in previous papers, so we discuss the realization of these more complex discrete theta angles in the mirror construction. We find that discrete theta angles, both in the original gauge theory and their mirrors, are intimately related to the description of centers of universal covering groups as quotients of weight lattices by root sublattices. We perform numerous consistency checks, comparing results against basic group-theoretic relations as well as with decomposition, which describes how two-dimensional theories with one-form symmetries (such as pure gauge theories with nontrivial centers) decompose into disjoint unions, in this case of pure gauge theories with quotiented gauge groups and discrete theta angles.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we extend the non-Abelian mirror proposal of two of the authors from two-dimensional gauge theories with connected gauge groups to the case of [Formula: see text] gauge groups with discrete theta angles. We check our proposed extension by counting and comparing vacua in mirrors to the known dual two-dimensional [Formula: see text] gauge theories. The mirrors in question are Landau–Ginzburg orbifolds, and for mirrors to [Formula: see text] gauge theories, the critical loci of the mirror superpotential often intersect fixed-point loci, so that to count vacua, one must take into account the twisted sector contributions. This is a technical novelty relative to the mirrors of gauge theories with connected gauge groups, for which critical loci do not intersect fixed-point loci and so no orbifold twisted sector contributions are pertinent. The vacuum computations turn out to be a rather intricate test of the proposed mirrors, in particular as untwisted sector states in the mirror to one theory are often exchanged with twisted sector states in the mirror to the dual. In cases with nontrivial IR limits, we also check that the central charges computed from the Landau–Ginzburg mirrors match those expected for the IR SCFTs. 
    more » « less
  2. A<sc>bstract</sc>

    Recently there has been a notable progress in the study of glueball states in lattice gauge theories, in particular extrapolating their spectrum to the limit of large number of colorsN. In this note we compare the largeNlattice results with the holographic predictions, focusing on the Klebanov-Strassler model, which describes a gauge theory with$$ \mathcal{N} $$N= 1 supersymmetry. We note that glueball spectrum demonstrates approximate universality across a range of gauge theory models. Because of this universality the holographic models can give reliable predictions for the spectrum of pure SU(N) Yang-Mills theories with and without supersymmetry. This is especially important for the supersymmetric theories, for which no firm lattice predictions exist yet, and the holographic models remain the most tractable approach. For SU(N) theories with largeNthe lattice non-supersymmetric and holographic supersymmetric predictions for the mass ratios of the lightest states in various sectors agree up to 5–8%, supporting the proposed universality. In particular, both lattice and holography give predictions for the 2++and 1−−mass ratio, consistent with the known constraints on the pomeron and odderon Regge trajectories.

    more » « less
  3. A bstract We analyze topological mass terms of BF type arising in supersymmetric M-theory compactifications to AdS 5 . These describe spontaneously broken higher-form gauge symmetries in the bulk. Different choices of boundary conditions for the BF terms yield dual field theories with distinct global discrete symmetries. We discuss in detail these symmetries and their ’t Hooft anomalies for 4d $$ \mathcal{N} $$ N = 1 SCFTs arising from M5-branes wrapped on a Riemann surface without punctures, including theories from M5-branes at a ℤ 2 orbifold singularity. The anomaly polynomial is computed via inflow and contains background fields for discrete global 0-, 1-, and 2-form symmetries and continuous 0-form symmetries, as well as axionic background fields. The latter are properly interpreted in the context of anomalies in the space of coupling constants. 
    more » « less
  4. A bstract We study electric-magnetic duality in compactifications of M-theory on twisted connected sum (TCS) G 2 manifolds via duality with F-theory. Specifically, we study the physics of the D3-branes in F-theory compactified on a Calabi-Yau fourfold Y , dual to a compactification of M-theory on a TCS G 2 manifold X . $$ \mathcal{N} $$ N = 2 supersymmetry is restored in an appropriate geometric limit. In that limit, we demonstrate that the dual of D3-branes probing seven-branes corresponds to the shrinking of certain surfaces and curves, yielding light particles that may carry both electric and magnetic charges. We provide evidence that the Minahan-Nemeschansky theories with E n flavor symmetry may be realized in this way. The SL(2 , ℤ) monodromy of the 3/7-brane system is dual to a Fourier-Mukai transform of the dual IIA/M-theory geometry in this limit, and we extrapolate this monodromy action to the global compactification. Away from the limit, the theory is broken to $$ \mathcal{N} $$ N = 1 supersymmetry by a D-term. 
    more » « less
  5. (3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error-correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of \mathbb{Z}_2 ℤ 2 gauge theory with fermionic charges, in \mathbb{Z}_2 \times \mathbb{Z}_2 ℤ 2 × ℤ 2 gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ( D_n D n ) and alternating ( A_6 A 6 ) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an H^4 H 4 cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of the interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D A_6 A 6 gauge theory. 
    more » « less