skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Thermal convection over fractal surfaces
We use well resolved numerical simulations with the lattice Boltzmann method to study Rayleigh–Bénard convection in cells with a fractal boundary in two dimensions for $Pr = 1$ and $$Ra \in \left [10^7, 10^{10}\right ]$$ , where Pr and Ra are the Prandtl and Rayleigh numbers. The fractal boundaries are functions characterized by power spectral densities $S(k)$ that decay with wavenumber, $$k$$ , as $$S(k) \sim k^{p}$$ ( $p < 0$ ). The degree of roughness is quantified by the exponent $$p$$ with $p < -3$ for smooth (differentiable) surfaces and $$-3 \le p < -1$$ for rough surfaces with Hausdorff dimension $$D_f=\frac {1}{2}(p+5)$$ . By computing the exponent $$\beta$$ using power law fits of $$Nu \sim Ra^{\beta }$$ , where $Nu$ is the Nusselt number, we find that the heat transport scaling increases with roughness through the top two decades of $$Ra \in \left [10^8, 10^{10}\right ]$$ . For $$p$$ $= -3.0$ , $-2.0$ and $-1.5$ we find $$\beta = 0.288 \pm 0.005, 0.329 \pm 0.006$$ and $$0.352 \pm 0.011$$ , respectively. We also find that the Reynolds number, $Re$ , scales as $$Re \sim Ra^{\xi }$$ , where $$\xi \approx 0.57$$ over $$Ra \in \left [10^7, 10^{10}\right ]$$ , for all $$p$$ used in the study. For a given value of $$p$$ , the averaged $Nu$ and $Re$ are insensitive to the specific realization of the roughness.  more » « less
Award ID(s):
1813003
PAR ID:
10225023
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
907
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The central open question about Rayleigh–Bénard convection – buoyancy-driven flow in a fluid layer heated from below and cooled from above – is how vertical heat flux depends on the imposed temperature gradient in the strongly nonlinear regime where the flows are typically turbulent. The quantitative challenge is to determine how the Nusselt number $Nu$ depends on the Rayleigh number $Ra$ in the $$Ra\to \infty$$ limit for fluids of fixed finite Prandtl number $Pr$ in fixed spatial domains. Laboratory experiments, numerical simulations and analysis of Rayleigh's mathematical model have yet to rule out either of the proposed ‘classical’ $$Nu \sim Ra^{1/3}$$ or ‘ultimate’ $$Nu \sim Ra^{1/2}$$ asymptotic scaling theories. Among the many solutions of the equations of motion at high $Ra$ are steady convection rolls that are dynamically unstable but share features of the turbulent attractor. We have computed these steady solutions for $Ra$ up to $$10^{14}$$ with $Pr=1$ and various horizontal periods. By choosing the horizontal period of these rolls at each $Ra$ to maximize $Nu$ , we find that steady convection rolls achieve classical asymptotic scaling. Moreover, they transport more heat than turbulent convection in experiments or simulations at comparable parameters. If heat transport in turbulent convection continues to be dominated by heat transport in steady rolls as $$Ra\to \infty$$ , it cannot achieve the ultimate scaling. 
    more » « less
  2. A bstract Using a data sample of 980 fb − 1 collected with the Belle detector at the KEKB asymmetric-energy e + e − collider, we study the processes of $$ {\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0} $$ Ξ c 0 → Λ K ¯ ∗ 0 , $$ {\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0} $$ Ξ c 0 → Σ 0 K ¯ ∗ 0 , and $$ {\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -} $$ Ξ c 0 → Σ + K ∗ − for the first time. The relative branching ratios to the normalization mode of $$ {\Xi}_c^0\to {\Xi}^{-}{\pi}^{+} $$ Ξ c 0 → Ξ − π + are measured to be $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.18\pm 0.02\left(\mathrm{stat}.\right)\pm 0.01\left(\mathrm{syst}.\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.69\pm 0.03\left(\mathrm{stat}.\right)\pm 0.03\left(\mathrm{syst}.\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.34\pm 0.06\left(\mathrm{stat}.\right)\pm 0.02\left(\mathrm{syst}.\right),\end{array}} $$ B Ξ c 0 → Λ K ¯ ∗ 0 / B Ξ c 0 → Ξ − π + = 0.18 ± 0.02 stat . ± 0.01 syst . , B Ξ c 0 → Σ 0 K ¯ ∗ 0 / B Ξ c 0 → Ξ − π + = 0.69 ± 0.03 stat . ± 0.03 syst . , B Ξ c 0 → Σ + K ∗ − / B Ξ c 0 → Ξ − π + = 0.34 ± 0.06 stat . ± 0.02 syst . , where the uncertainties are statistical and systematic, respectively. We obtain $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right)=\left(3.3\pm 0.3\left(\mathrm{stat}.\right)\pm 0.2\left(\mathrm{syst}.\right)\pm 1.0\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^0{\overline{K}}^{\ast 0}\right)=\left(12.4\pm 0.5\left(\mathrm{stat}.\right)\pm 0.5\left(\mathrm{syst}.\right)\pm 3.6\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast 0}\right)=\left(6.1\pm 1.0\left(\mathrm{stat}.\right)\pm 0.4\left(\mathrm{syst}.\right)\pm 1.8\left(\mathrm{ref}.\right)\right)\times {10}^{-3},\end{array}} $$ B Ξ c 0 → Λ K ¯ ∗ 0 = 3.3 ± 0.3 stat . ± 0.2 syst . ± 1.0 ref . × 10 − 3 , B Ξ c 0 → Σ 0 K ¯ ∗ 0 = 12.4 ± 0.5 stat . ± 0.5 syst . ± 3.6 ref . × 10 − 3 , B Ξ c 0 → Σ + K ∗ 0 = 6.1 ± 1.0 stat . ± 0.4 syst . ± 1.8 ref . × 10 − 3 , where the uncertainties are statistical, systematic, and from $$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ B Ξ c 0 → Ξ − π + , respectively. The asymmetry parameters $$ \alpha \left({\Xi}_c^0\to \Lambda {\overline{K}}^{\ast 0}\right) $$ α Ξ c 0 → Λ K ¯ ∗ 0 and $$ \alpha \left({\Xi}_c^0\to {\Sigma}^{+}{K}^{\ast -}\right) $$ α Ξ c 0 → Σ + K ∗ − are 0 . 15 ± 0 . 22(stat . ) ± 0 . 04(syst . ) and − 0 . 52 ± 0 . 30(stat . ) ± 0 . 02(syst . ), respectively, where the uncertainties are statistical followed by systematic. 
    more » « less
  3. null (Ed.)
    Steady two-dimensional Rayleigh–Bénard convection between stress-free isothermal boundaries is studied via numerical computations. We explore properties of steady convective rolls with aspect ratios $${\rm \pi} /5\leqslant \varGamma \leqslant 4{\rm \pi}$$ , where $$\varGamma$$ is the width-to-height ratio for a pair of counter-rotating rolls, over eight orders of magnitude in the Rayleigh number, $$10^3\leqslant Ra\leqslant 10^{11}$$ , and four orders of magnitude in the Prandtl number, $$10^{-2}\leqslant Pr\leqslant 10^2$$ . At large $Ra$ where steady rolls are dynamically unstable, the computed rolls display $$Ra \rightarrow \infty$$ asymptotic scaling. In this regime, the Nusselt number $Nu$ that measures heat transport scales as $$Ra^{1/3}$$ uniformly in $Pr$ . The prefactor of this scaling depends on $$\varGamma$$ and is largest at $$\varGamma \approx 1.9$$ . The Reynolds number $Re$ for large- $Ra$ rolls scales as $$Pr^{-1} Ra^{2/3}$$ with a prefactor that is largest at $$\varGamma \approx 4.5$$ . All of these large- $Ra$ features agree quantitatively with the semi-analytical asymptotic solutions constructed by Chini & Cox ( Phys. Fluids , vol. 21, 2009, 083603). Convergence of $Nu$ and $Re$ to their asymptotic scalings occurs more slowly when $Pr$ is larger and when $$\varGamma$$ is smaller. 
    more » « less
  4. Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($$\alpha ,\beta ,k_1,k_2$$) linear boundary feedback law at the right end. The $$2 \times 2$$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $$\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$$. The role of the control parameters is examined and the following results have been proven: (i) when $$\beta \neq 0$$, the set of vibrational modes is asymptotically close to the vertical line on the complex $$\nu$$-plane given by the equation $$\Re \nu = \alpha + (1-k_1k_2)/\beta$$; (ii) when $$\beta = 0$$ and the parameter $$K = (1-k_1 k_2)/(k_1+k_2)$$ is such that $$\left |K\right |\neq 1$$ then the following relations are valid: $$\Re (\nu _n/n) = O\left (1\right )$$ and $$\Im (\nu _n/n^2) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$; (iii) when $$\beta =0$$, $|K| = 1$, and $$\alpha = 0$$, then the following relations are valid: $$\Re (\nu _n/n^2) = O\left (1\right )$$ and $$\Im (\nu _n/n) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$; (iv) when $$\beta =0$$, $|K| = 1$, and $$\alpha>0$$, then the following relations are valid: $$\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$$ and $$\Im (\nu _n/n^2) = O\left (1\right )$$ as $$\left |n\right |\to \infty$$. 
    more » « less
  5. A bstract The NA62 experiment reports the branching ratio measurement $$ \mathrm{BR}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left({10.6}_{-3.4}^{+4.0}\left|{}_{\mathrm{stat}}\right.\pm {0.9}_{\mathrm{syst}}\right)\times {10}^{-11} $$ BR K + → π + ν ν ¯ = 10.6 − 3.4 + 4.0 stat ± 0.9 syst × 10 − 11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ decay, observed with a significance of 3.4 σ . The experiment achieves a single event sensitivity of (0 . 839 ± 0 . 054) × 10 − 11 , corresponding to 10.0 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . This measurement is also used to set limits on BR( K + → π + X ), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample. 
    more » « less