 Award ID(s):
 1810826
 NSFPAR ID:
 10130938
 Date Published:
 Journal Name:
 IMA Journal of Applied Mathematics
 Volume:
 84
 Issue:
 5
 ISSN:
 02724960
 Page Range / eLocation ID:
 873 to 911
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

null (Ed.)We use well resolved numerical simulations with the lattice Boltzmann method to study Rayleigh–Bénard convection in cells with a fractal boundary in two dimensions for $Pr = 1$ and $Ra \in \left [10^7, 10^{10}\right ]$ , where Pr and Ra are the Prandtl and Rayleigh numbers. The fractal boundaries are functions characterized by power spectral densities $S(k)$ that decay with wavenumber, $k$ , as $S(k) \sim k^{p}$ ( $p < 0$ ). The degree of roughness is quantified by the exponent $p$ with $p < 3$ for smooth (differentiable) surfaces and $3 \le p < 1$ for rough surfaces with Hausdorff dimension $D_f=\frac {1}{2}(p+5)$ . By computing the exponent $\beta$ using power law fits of $Nu \sim Ra^{\beta }$ , where $Nu$ is the Nusselt number, we find that the heat transport scaling increases with roughness through the top two decades of $Ra \in \left [10^8, 10^{10}\right ]$ . For $p$ $= 3.0$ , $2.0$ and $1.5$ we find $\beta = 0.288 \pm 0.005, 0.329 \pm 0.006$ and $0.352 \pm 0.011$ , respectively. We also find that the Reynolds number, $Re$ , scales as $Re \sim Ra^{\xi }$ , where $\xi \approx 0.57$ over $Ra \in \left [10^7, 10^{10}\right ]$ , for all $p$ used in the study. For a given value of $p$ , the averaged $Nu$ and $Re$ are insensitive to the specific realization of the roughness.more » « less

null (Ed.)The distribution of natural frequencies of the Euler–Bernoulli beam resting on elastic foundation and subject to an axial force in the presence of several damping mechanisms is investigated. The damping mechanisms are: ( i ) an external or viscous damping with damping coefficient ( − a 0 ( x )), ( ii ) a damping proportional to the bending rate with the damping coefficient a 1 ( x ). The beam is clamped at the left end and equipped with a fourparameter (α, β, κ 1 , κ 2 ) linear boundary feedback law at the right end. The 2 × 2 boundary feedback matrix relates the control input (a vector of velocity and its spacial derivative at the right end) to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space of the system. The dynamics generator has a purely discrete spectrum (the vibrational modes). Explicit asymptotic formula for the eigenvalues as the number of an eigenvalue tends to infinity have been obtained. It is shown that the boundary control parameters and the distributed damping play different roles in the asymptotical formulas for the eigenvalues of the dynamics generator. Namely, the damping coefficient a 1 and the boundary controls κ 1 and κ 2 enter the leading asymptotical term explicitly, while damping coefficient a 0 appears in the lower order terms.more » « less

Abstract Hausel and RodriguezVillegas (2015, Astérisque 370, 113–156) recently observed that work of Göttsche, combined with a classical result of Erdös and Lehner on integer partitions, implies that the limiting Betti distribution for the Hilbert schemes $(\mathbb {C}^{2})^{[n]}$ on $n$ points, as $n\rightarrow +\infty ,$ is a Gumbel distribution . In view of this example, they ask for further such Betti distributions. We answer this question for the quasihomogeneous Hilbert schemes $((\mathbb {C}^{2})^{[n]})^{T_{\alpha ,\beta }}$ that are cut out by torus actions. We prove that their limiting distributions are also of Gumbel type. To obtain this result, we combine work of Buryak, Feigin, and Nakajima on these Hilbert schemes with our generalization of the result of Erdös and Lehner, which gives the distribution of the number of parts in partitions that are multiples of a fixed integer $A\geq 2.$ Furthermore, if $p_{k}(A;n)$ denotes the number of partitions of $n$ with exactly $k$ parts that are multiples of $A$ , then we obtain the asymptotic $$ \begin{align*} p_{k}(A,n)\sim \frac{24^{\frac k2\frac14}(nAk)^{\frac k2\frac34}}{\sqrt2\left(1\frac1A\right)^{\frac k2\frac14}k!A^{k+\frac12}(2\pi)^{k}}e^{2\pi\sqrt{\frac1{6}\left(1\frac1A\right)(nAk)}}, \end{align*} $$ a result which is of independent interest.more » « less

By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1Wasserstein metric over the planar grid
$\{0,1,\dots , n\}^2$ has$L_1$ distortion bounded below by a constant multiple of$\sqrt {\log n}$ . We provide a new “dimensionality” interpretation of Kislyakov’s argument, showing that if$\{G_n\}_{n=1}^\infty$ is a sequence of graphs whose isoperimetric dimension and Lipschitzspectral dimension equal a common number$\delta \in [2,\infty )$ , then the 1Wasserstein metric over$G_n$ has$L_1$ distortion bounded below by a constant multiple of$(\log G_n)^{\frac {1}{\delta }}$ . We proceed to compute these dimensions for$\oslash$ powers of certain graphs. In particular, we get that the sequence of diamond graphs$\{\mathsf {D}_n\}_{n=1}^\infty$ has isoperimetric dimension and Lipschitzspectral dimension equal to 2, obtaining as a corollary that the 1Wasserstein metric over$\mathsf {D}_n$ has$L_1$ distortion bounded below by a constant multiple of$\sqrt {\log  \mathsf {D}_n}$ . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of$L_1$ embeddable graphs whose sequence of 1Wasserstein metrics is not$L_1$ embeddable. 
We investigate the behavior of higherform symmetries at variousquantum phase transitions. We consider discrete 1form symmetries, whichcan be either part of the generalized concept “categorical symmetry”(labelled as \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) )introduced recently, or an explicit Z_N^{(1)} Z N ( 1 ) 1form symmetry. We demonstrate that for many quantum phase transitionsinvolving a Z_N^{(1)} Z N ( 1 ) or \tilde{Z}_N^{(1)} Z ̃ N ( 1 ) symmetry, the following expectation value \langle \left( O_\mathcal{C}\right)^2 \rangle ⟨ ( O 𝒞 ) 2 ⟩ takes the form \langle \left( \log O_\mathcal{C} \right)^2 \rangle \sim  \frac{A}{\epsilon} P + b \log P ⟨ ( log O 𝒞 ) 2 ⟩ ∼ − A ϵ P + b log P , where O_\mathcal{C} O 𝒞 is an operator defined associated with loop \mathcal{C} 𝒞 (or its interior \mathcal{A} 𝒜 ),which reduces to the Wilson loop operator for cases with an explicit Z_N^{(1)} Z N ( 1 ) 1form symmetry. P P is the perimeter of \mathcal{C} 𝒞 ,and the b \log P b log P term arises from the sharp corners of the loop \mathcal{C} 𝒞 ,which is consistent with recent numerics on a particular example. b b is a universal microscopicindependent number, which in (2+1)d ( 2 + 1 ) d is related to the universal conductivity at the quantum phasetransition. b b can be computed exactly for certain transitions using the dualitiesbetween (2+1)d ( 2 + 1 ) d conformal field theories developed in recent years. We also compute the"strange correlator" of O_\mathcal{C} O 𝒞 : S_{\mathcal{C}} = \langle 0  O_\mathcal{C}  1 \rangle / \langle 0  1 \rangle S 𝒞 = ⟨ 0  O 𝒞  1 ⟩ / ⟨ 0  1 ⟩ where 0\rangle  0 ⟩ and 1\rangle  1 ⟩ are manybody states with different topological nature.more » « less