skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exact relations between Rayleigh–Bénard and rotating plane Couette flow in two dimensions
Rayleigh–Bénard convection (RBC) and Taylor–Couette flow (TCF) are two paradigmatic fluid dynamical systems frequently discussed together because of their many similarities despite their different geometries and forcing. Often these analogies require approximations, but in the limit of large radii where TCF becomes rotating plane Couette flow (RPC) exact relations can be established. When the flows are restricted to two spatial independent variables, there is an exact specification that maps the three velocity components in RPC to the two velocity components and one temperature field in RBC. Using this, we deduce several relations between both flows: (i) heat and angular momentum transport differ by $$(1-R_{\Omega })$$ , explaining why angular momentum transport is not symmetric around $$R_{\Omega }=1/2$$ even though the relation between $Ra$ , the Rayleigh number, and $$R_{\Omega }$$ , a non-dimensional measure of the rotation, has this symmetry. This relationship leads to a predicted value of $$R_{\Omega }$$ that maximizes the angular momentum transport that agrees remarkably well with existing numerical simulations of the full three-dimensional system. (ii) One variable in both flows satisfies a maximum principle, i.e. the fields’ extrema occur at the walls. Accordingly, backflow events in shear flow cannot occur in this quasi two-dimensional setting. (iii) For free-slip boundary conditions on the axial and radial velocity components, previous rigorous analysis for RBC implies that the azimuthal momentum transport in RPC is bounded from above by $$Re_S^{5/6}$$ , where $$Re_S$$ is the shear Reynolds number, with a scaling exponent smaller than the anticipated $$Re_S^1$$ .  more » « less
Award ID(s):
1813003
PAR ID:
10225043
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
903
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent direct numerical simulations (DNS) and computations of exact steady solutions suggest that the heat transport in Rayleigh–Bénard convection (RBC) exhibits the classical 1 / 3 scaling as the Rayleigh number R a → ∞ with Prandtl number unity, consistent with Malkus–Howard’s marginally stable boundary layer theory. Here, we construct conditional upper and lower bounds for heat transport in two-dimensional RBC subject to a physically motivated marginal linear-stability constraint. The upper estimate is derived using the Constantin–Doering–Hopf (CDH) variational framework for RBC with stress-free boundary conditions, while the lower estimate is developed for both stress-free and no-slip boundary conditions. The resulting optimization problems are solved numerically using a time-stepping algorithm. Our results indicate that the upper heat-flux estimate follows the same 5 / 12 scaling as the rigorous CDH upper bound for the two-dimensional stress-free case, indicating that the linear-stability constraint fails to modify the boundary-layer thickness of the mean temperature profile. By contrast, the lower estimate successfully captures the 1 / 3 scaling for both the stress-free and no-slip cases. These estimates are tested using marginally-stable equilibrium solutions obtained under the quasi-linear approximation, steady roll solutions and DNS data. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’. 
    more » « less
  2. Since Taylor’s seminal paper, the existence of large-scale quasi-axisymmetric structures has been a matter of interest when studying Taylor–Couette flow. In this article, we probe their formation in the highly turbulent regime by conducting a series of numerical simulations at a fixed Reynolds number Re s = 3.6 × 10 4 while varying the Coriolis parameter to analyse the flow characteristics as the structures arise and dissipate. We show how the Coriolis force induces a one-way coupling between the radial and azimuthal velocity fields inside the boundary layer, but in the bulk, there is a two-way coupling that causes competing effects. We discuss how this complicates the analogy of narrow-gap Taylor–Couette to other convective flows. We then compare these statistics with a similar shear flow without no-slip boundary layers, showing how this double coupling causes very different effects. We finish by reflecting on the possible origins of turbulent Taylor rolls. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 1)’. 
    more » « less
  3. The connection between the heat transfer and characteristic flow velocities of planetary core-style convection remains poorly understood. To address this, we present novel laboratory models of rotating Rayleigh–Bénard convection in which heat and momentum transfer are simultaneously measured. Using water (Prandtl number, Pr≃6) and cylindrical containers of diameter-to-height aspect ratios of Γ≃3,1.5,0.75, the non-dimensional rotation period (Ekman number, E) is varied between 10−7≲E≲3×10−5 and the non-dimensional convective forcing (Rayleigh number, Ra) ranges from 107≲Ra≲1012. Our heat transfer data agree with those of previous studies and are largely controlled by boundary layer dynamics. We utilize laser Doppler velocimetry (LDV) to obtain experimental point measurements of bulk axial velocities, resulting in estimates of the non-dimensional momentum transfer (Reynolds number, Re) with values between 4×102≲Re≲5×104. Behavioral transitions in the velocity data do not exist where transitions in heat transfer behaviors occur, indicating that bulk dynamics are not controlled by the boundary layers of the system. Instead, the LDV data agree well with the diffusion-free Coriolis–Inertia–Archimedian (CIA) scaling over the range of Ra explored. Furthermore, the CIA scaling approximately co-scales with the Viscous–Archimedian–Coriolis (VAC) scaling over the parameter space studied. We explain this observation by demonstrating that the VAC and CIA relations will co-scale when the local Reynolds number in the fluid bulk is of order unity. We conclude that in our experiments and similar laboratory and numerical investigations with E≳10−7, Ra≲1012, Pr≃7, heat transfer is controlled by boundary layer physics while quasi-geostrophically turbulent dynamics relevant to core flows robustly exist in the fluid bulk. 
    more » « less
  4. Taylor–Couette (TC) flow, the flow between two independently rotating and co-axial cylinders, is commonly used as a canonical model for shear flows. Unlike plane Couette flow, pinned secondary flows can be found in TC flow. These are known as Taylor rolls and drastically affect the flow behaviour. We study the possibility of modifying these secondary structures using patterns of stress-free and no-slip boundary conditions on the inner cylinder. For this, we perform direct numerical simulations of narrow-gap TC flow with pure inner-cylinder rotation at four different shear Reynolds numbers up to $$Re_s=3\times 10^4$$ . We find that one-dimensional azimuthal patterns do not have a significant effect on the flow topology, and that the resulting torque is a large fraction ( $$\sim$$ 80 %–90 %) of torque in the fully no-slip case. One-dimensional axial patterns decrease the torque more, and for certain pattern frequency disrupt the rolls by interfering with the existing Reynolds stresses that generate secondary structures. For $$Re\geq 10^4$$ , this disruption leads to a smaller torque than what would be expected from simple boundary layer effects and the resulting effective slip length and slip velocity. We find that two-dimensional checkerboard patterns have similar behaviour to azimuthal patterns and do not affect the flow or the torque substantially, but two-dimensional spiral inhomogeneities can move around the pinned secondary flows as they induce persistent axial velocities. We quantify the roll's movement for various angles and the widths of the spiral pattern, and find a non-monotonic behaviour as a function of pattern angle and pattern frequency. 
    more » « less
  5. Direct numerical simulations are carried out to study the flow structure and transport properties in turbulent Rayleigh–Bénard convection in a vertical cylindrical cell of aspect ratio one with an imposed axial magnetic field. Flows at the Prandtl number $0.025$ and Rayleigh and Hartmann numbers up to $$10^{9}$$ and $1400$ , respectively, are considered. The results are consistent with those of earlier experimental and numerical data. As anticipated, the heat transfer rate and kinetic energy are suppressed by a strong magnetic field. At the same time, their growth with Rayleigh number is found to be faster in flows at high Hartmann numbers. This behaviour is attributed to the newly discovered flow regime characterized by prominent quasi-two-dimensional structures reminiscent of vortex sheets observed earlier in simulations of magnetohydrodynamic turbulence. Rotating wall modes similar to those in Rayleigh–Bénard convection with rotation are found in flows near the Chandrasekhar linear stability limit. A detailed analysis of the spatial structure of the flows and its effect on global transport properties is reported. 
    more » « less