skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Controlling secondary flows in Taylor–Couette flow using stress-free boundary conditions
Taylor–Couette (TC) flow, the flow between two independently rotating and co-axial cylinders, is commonly used as a canonical model for shear flows. Unlike plane Couette flow, pinned secondary flows can be found in TC flow. These are known as Taylor rolls and drastically affect the flow behaviour. We study the possibility of modifying these secondary structures using patterns of stress-free and no-slip boundary conditions on the inner cylinder. For this, we perform direct numerical simulations of narrow-gap TC flow with pure inner-cylinder rotation at four different shear Reynolds numbers up to $$Re_s=3\times 10^4$$ . We find that one-dimensional azimuthal patterns do not have a significant effect on the flow topology, and that the resulting torque is a large fraction ( $$\sim$$ 80 %–90 %) of torque in the fully no-slip case. One-dimensional axial patterns decrease the torque more, and for certain pattern frequency disrupt the rolls by interfering with the existing Reynolds stresses that generate secondary structures. For $$Re\geq 10^4$$ , this disruption leads to a smaller torque than what would be expected from simple boundary layer effects and the resulting effective slip length and slip velocity. We find that two-dimensional checkerboard patterns have similar behaviour to azimuthal patterns and do not affect the flow or the torque substantially, but two-dimensional spiral inhomogeneities can move around the pinned secondary flows as they induce persistent axial velocities. We quantify the roll's movement for various angles and the widths of the spiral pattern, and find a non-monotonic behaviour as a function of pattern angle and pattern frequency.  more » « less
Award ID(s):
1934121
PAR ID:
10462024
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
922
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turbulent shear flows are abundant in geophysical and astrophysical systems and in engineering-technology applications. They are often riddled with large-scale secondary flows that drastically modify the characteristics of the primary stream, preventing or enhancing mixing, mass and heat transfer. Using experiments and numerical simulations, we study the possibility of modifying these secondary flows by using superhydrophobic surface treatments that reduce the local shear. We focus on the canonical problem of Taylor–Couette flow, the flow between two coaxial and independently rotating cylinders, which has robust secondary structures called Taylor rolls that persist even at significant levels of turbulence. We generate these structures by rotating only the inner cylinder of the system, and show that an axially spaced superhydrophobic treatment can weaken the rolls through a mismatching surface heterogeneity, as long as the roll size can be fixed. The minimum hydrophobicity of the treatment required for this flow control is rationalized, and its effectiveness beyond the Reynolds numbers studied here is also discussed. 
    more » « less
  2. Since Taylor’s seminal paper, the existence of large-scale quasi-axisymmetric structures has been a matter of interest when studying Taylor–Couette flow. In this article, we probe their formation in the highly turbulent regime by conducting a series of numerical simulations at a fixed Reynolds number Re s = 3.6 × 10 4 while varying the Coriolis parameter to analyse the flow characteristics as the structures arise and dissipate. We show how the Coriolis force induces a one-way coupling between the radial and azimuthal velocity fields inside the boundary layer, but in the bulk, there is a two-way coupling that causes competing effects. We discuss how this complicates the analogy of narrow-gap Taylor–Couette to other convective flows. We then compare these statistics with a similar shear flow without no-slip boundary layers, showing how this double coupling causes very different effects. We finish by reflecting on the possible origins of turbulent Taylor rolls. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 1)’. 
    more » « less
  3. null (Ed.)
    Flow of a semidilute neutrally buoyant and non-colloidal suspension is numerically studied in the Taylor–Couette geometry where the inner cylinder is rotating and the outer one is stationary. We consider a suspension with bulk particle volume fraction $${\phi _b} = 0.1$$ , the radius ratio $$(\eta = {r_i}/{r_o} = 0.877)$$ and two particle size ratios $$\mathrm{\epsilon }\,( = \; d\textrm{/}a) = 60,\;200$$ , where d is the gap width ( $$= {r_o} - {r_i}$$ ) between cylinders, a is the suspended particles’ radius and $$r_i$$ and $$r_o$$ are the inner and outer radii of the cylinder, respectively. Numerical simulations are conducted using the suspension balance model (SBM) and rheological constitutive laws. We predict the critical Reynolds number in which counter-rotating vortices arise in the annulus. It turns out that the primary instability appears through a supercritical bifurcation. For the suspension of $$\mathrm{\epsilon } = 200$$ , the circular Couette flow (CCF) transitions via Taylor vortex flow (TVF) to wavy vortex flow (WVF). Additional flow states of non-axisymmetric vortices, namely spiral vortex flow (SVF) and wavy spiral vortex flow (WSVF) are observed between CCF and WVF for the suspension of $$\mathrm{\epsilon } = 60$$ ; thus, the transitions occur following the sequence of CCF → SVF → WSVF → WVF. Furthermore, we estimate the friction and torque coefficients of the suspension. Suspended particles substantially enhance the torque on the inner cylinder, and the axial travelling wave of spiral vortices reduces the friction and torque coefficients. However, the coefficients are practically the same in the WVF regime where particles are almost uniformly distributed in the annulus by the axial oscillating flow. 
    more » « less
  4. A concise review is given of astrophysically motivated experimental and theoretical research on Taylor–Couette flow. The flows of interest rotate differentially with the inner cylinder faster than the outer, but are linearly stable against Rayleigh’s inviscid centrifugal instability. At shear Reynolds numbers as large as 10 6 , hydrodynamic flows of this type (quasi-Keplerian) appear to be nonlinearly stable: no turbulence is seen that cannot be attributed to interaction with the axial boundaries, rather than the radial shear itself. Direct numerical simulations agree, although they cannot yet reach such high Reynolds numbers. This result indicates that accretion-disc turbulence is not purely hydrodynamic in origin, at least insofar as it is driven by radial shear. Theory, however, predicts linear magnetohydrodynamic (MHD) instabilities in astrophysical discs: in particular, the standard magnetorotational instability (SMRI). MHD Taylor–Couette experiments aimed at SMRI are challenged by the low magnetic Prandtl numbers of liquid metals. High fluid Reynolds numbers and careful control of the axial boundaries are required. The quest for laboratory SMRI has been rewarded with the discovery of some interesting inductionless cousins of SMRI, and with the recently reported success in demonstrating SMRI itself using conducting axial boundaries. Some outstanding questions and near-future prospects are discussed, especially in connection with astrophysics. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 2)’. 
    more » « less
  5. null (Ed.)
    Rayleigh–Bénard convection (RBC) and Taylor–Couette flow (TCF) are two paradigmatic fluid dynamical systems frequently discussed together because of their many similarities despite their different geometries and forcing. Often these analogies require approximations, but in the limit of large radii where TCF becomes rotating plane Couette flow (RPC) exact relations can be established. When the flows are restricted to two spatial independent variables, there is an exact specification that maps the three velocity components in RPC to the two velocity components and one temperature field in RBC. Using this, we deduce several relations between both flows: (i) heat and angular momentum transport differ by $$(1-R_{\Omega })$$ , explaining why angular momentum transport is not symmetric around $$R_{\Omega }=1/2$$ even though the relation between $Ra$ , the Rayleigh number, and $$R_{\Omega }$$ , a non-dimensional measure of the rotation, has this symmetry. This relationship leads to a predicted value of $$R_{\Omega }$$ that maximizes the angular momentum transport that agrees remarkably well with existing numerical simulations of the full three-dimensional system. (ii) One variable in both flows satisfies a maximum principle, i.e. the fields’ extrema occur at the walls. Accordingly, backflow events in shear flow cannot occur in this quasi two-dimensional setting. (iii) For free-slip boundary conditions on the axial and radial velocity components, previous rigorous analysis for RBC implies that the azimuthal momentum transport in RPC is bounded from above by $$Re_S^{5/6}$$ , where $$Re_S$$ is the shear Reynolds number, with a scaling exponent smaller than the anticipated $$Re_S^1$$ . 
    more » « less