In an extremal eigenvalue problem, one considers a family of eigenvalue problems, each with discrete spectra, and extremizes a chosen eigenvalue over the family. In this chapter, we consider eigenvalue problems defined on Riemannian manifolds and extremize over the metric structure. For example, we consider the problem of maximizing the principal Laplace–Beltrami eigenvalue over a family of closed surfaces of fixed volume. Computational approaches to such extremal geometric eigenvalue problems present new computational challenges and require novel numerical tools, such as the parameterization of conformal classes and the development of accurate and efficient methods to solve eigenvalue problems on domains with nontrivial genus and boundary. We highlight recent progress on computational approaches for extremal geometric eigenvalue problems, including (i) maximizing Laplace–Beltrami eigenvalues on closed surfaces and (ii) maximizing Steklov eigenvalues on surfaces with boundary. 
                        more » 
                        « less   
                    
                            
                            Computation of free boundary minimal surfaces via extremal Steklov eigenvalue problems
                        
                    
    
            Recently Fraser and Schoen showed that the solution of a certain extremal Steklov eigenvalue problem on a compact surface with boundary can be used to generate a free boundary minimal surface, i.e. , a surface contained in the ball that has (i) zero mean curvature and (ii) meets the boundary of the ball orthogonally (doi: 10.1007/s00222-015-0604-x ). In this paper, we develop numerical methods that use this connection to realize free boundary minimal surfaces. Namely, on a compact surface, Σ, with genus γ and b boundary components, we maximize σ j (Σ, g )  L ( ∂ Σ, g ) over a class of smooth metrics, g , where σ j (Σ, g ) is the j th nonzero Steklov eigenvalue and L ( ∂ Σ, g ) is the length of ∂ Σ. Our numerical method involves (i) using conformal uniformization of multiply connected domains to avoid explicit parameterization for the class of metrics, (ii) accurately solving a boundary-weighted Steklov eigenvalue problem in multi-connected domains, and (iii) developing gradient-based optimization methods for this non-smooth eigenvalue optimization problem. For genus γ = 0 and b = 2, …, 9, 12, 15, 20 boundary components, we numerically solve the extremal Steklov problem for the first eigenvalue. The corresponding eigenfunctions generate a free boundary minimal surface, which we display in striking images. For higher eigenvalues, numerical evidence suggests that the maximizers are degenerate, but we compute local maximizers for the second and third eigenvalues with b = 2 boundary components and for the third and fifth eigenvalues with b = 3 boundary components. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10225138
- Date Published:
- Journal Name:
- ESAIM: Control, Optimisation and Calculus of Variations
- Volume:
- 27
- ISSN:
- 1292-8119
- Page Range / eLocation ID:
- 34
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Let (Mn,g) be a complete simply connectedn-dimensional Riemannian manifold with curvature bounds Sectg≤ κ for κ ≤ 0 and Ricg≥ (n− 1)KgforK≤ 0. We prove that for any bounded domain Ω ⊂Mnwith diameterdand Lipschitz boundary, if Ω* is a geodesic ball in the simply connected space form with constant sectional curvature κ enclosing the same volume as Ω, then σ1(Ω) ≤Cσ1(Ω*), where σ1(Ω) and σ1(Ω*) denote the first nonzero Steklov eigenvalues of Ω and Ω* respectively, andC=C(n, κ,K,d) is an explicit constant. When κ =K, we haveC= 1 and recover the Brock–Weinstock inequality, asserting that geodesic balls uniquely maximize the first nonzero Steklov eigenvalue among domains of the same volume, in Euclidean space and the hyperbolic space.more » « less
- 
            Abstract We investigate an inverse scattering problem for a thin inhomogeneous scatterer in R m , m = 2, 3, which we model as an m − 1 dimensional open surface. The scatterer is referred to as a screen. The goal is to design target signatures that are computable from scattering data in order to detect changes in the material properties of the screen. This target signature is characterized by a mixed Steklov eigenvalue problem for a domain whose boundary contains the screen. We show that the corresponding eigenvalues can be determined from appropriately modified scattering data by using the generalized linear sampling method. A weaker justification is provided for the classical linear sampling method. Numerical experiments are presented to support our theoretical results.more » « less
- 
            Let (M,g) be a compact n-dimensional Riemannian manifold without boundary, where the metric g is C^1-smooth. Consider the sequence of eigenfunctions u_k of the Laplace operator on M. Let B be a ball on M. We prove that the number of nodal domains of u_k that intersect B is not greater than C_1Volume(B)k+C_2k^{(n-1)/n}, where C_1 and C_2 depend on (M,g) only. The problem of local bounds for the volume and for the number of nodal domains was raised by Donnelly and Fefferman, who also proposed an idea how one can prove such bounds. We combine their idea with two ingredients: the recent sharp Remez type inequality for eigenfunctions and the Landis type growth lemma in narrow domains.more » « less
- 
            null (Ed.)Abstract For any smooth Riemannian metric on an $$(n+1)$$ ( n + 1 ) -dimensional compact manifold with boundary $$(M,\partial M)$$ ( M , ∂ M ) where $$3\le (n+1)\le 7$$ 3 ≤ ( n + 1 ) ≤ 7 , we establish general upper bounds for the Morse index of free boundary minimal hypersurfaces produced by min–max theory in the Almgren–Pitts setting. We apply our Morse index estimates to prove that for almost every (in the $$C^\infty $$ C ∞ Baire sense) Riemannan metric, the union of all compact, properly embedded free boundary minimal hypersurfaces is dense in M . If $$\partial M$$ ∂ M is further assumed to have a strictly mean convex point, we show the existence of infinitely many compact, properly embedded free boundary minimal hypersurfaces whose boundaries are non-empty. Our results prove a conjecture of Yau for generic metrics in the free boundary setting.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    