skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Is Reinforcement Learning the Choice of Human Learners?: A Case Study of Taxi Drivers
Learning to make optimal decisions is a common yet complicated task. While computer agents can learn to make decisions by running reinforcement learning (RL), it remains unclear how human beings learn. In this paper, we perform the first data-driven case study on taxi drivers to validate whether humans mimic RL to learn. We categorize drivers into three groups based on their performance trends and analyze the correlations between human drivers and agents trained using RL. We discover that drivers that become more efficient at earning over time exhibit similar learning patterns to those of agents, whereas drivers that become less efficient tend to do the opposite. Our study (1) provides evidence that some human drivers do adapt RL when learning, (2) enhances the deep understanding of taxi drivers' learning strategies, (3) offers a guideline for taxi drivers to improve their earnings, and (4) develops a generic analytical framework to study and validate human learning strategies.  more » « less
Award ID(s):
1942680 1952085 1831140
PAR ID:
10225178
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 28th International Conference on Advances in Geographic Information Systems
Page Range / eLocation ID:
357 to 366
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To make daily decisions, human agents devise their own "strategies" governing their mobility dynamics (e.g., taxi drivers have preferred working regions and times, and urban commuters have preferred routes and transit modes). Recent research such as generative adversarial imitation learning (GAIL) demonstrates successes in learning human decision-making strategies from their behavior data using deep neural networks (DNNs), which can accurately mimic how humans behave in various scenarios, e.g., playing video games, etc. However, such DNN-based models are "black box" models in nature, making it hard to explain what knowledge the models have learned from human, and how the models make such decisions, which was not addressed in the literature of imitation learning. This paper addresses this research gap by proposing xGAIL, the first explainable generative adversarial imitation learning framework. The proposed xGAIL framework consists of two novel components, including Spatial Activation Maximization (SpatialAM) and Spatial Randomized Input Sampling Explanation (SpatialRISE), to extract both global and local knowledge from a well-trained GAIL model that explains how a human agent makes decisions. Especially, we take taxi drivers' passenger-seeking strategy as an example to validate the effectiveness of the proposed xGAIL framework. Our analysis on a large-scale real-world taxi trajectory data shows promising results from two aspects: i) global explainable knowledge of what nearby traffic condition impels a taxi driver to choose a particular direction to find the next passenger, and ii) local explainable knowledge of what key (sometimes hidden) factors a taxi driver considers when making a particular decision. 
    more » « less
  2. null (Ed.)
    Smart passenger-seeking strategies employed by taxi drivers contribute not only to drivers’ incomes, but also higher quality of service passengers received. Therefore, understanding taxi drivers’ behaviors and learning the good passenger-seeking strategies are crucial to boost taxi drivers’ well-being and public transportation quality of service. However, we observe that drivers’ preferences of choosing which area to find the next passenger are diverse and dynamic across locations and drivers. It is hard to learn the location-dependent preferences given the partial data (i.e., an individual driver's trajectory may not cover all locations). In this paper, we make the first attempt to develop conditional generative adversarial imitation learning (cGAIL) model, as a unifying collective inverse reinforcement learning framework that learns the driver's decision-making preferences and policies by transferring knowledge across taxi driver agents and across locations. Our evaluation results on three months of taxi GPS trajectory data in Shenzhen, China, demonstrate that the driver's preferences and policies learned from cGAIL are on average 34.7% more accurate than those learned from other state-of-the-art baseline approaches. 
    more » « less
  3. null (Ed.)
    Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher’s preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent’s past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard reward functions. 
    more » « less
  4. null (Ed.)
    Conveying complex objectives to reinforcement learning (RL) agents can often be difficult, involving meticulous design of reward functions that are sufficiently informative yet easy enough to provide. Human-in-the-loop RL methods allow practitioners to instead interactively teach agents through tailored feedback; however, such approaches have been challenging to scale since human feedback is very expensive. In this work, we aim to make this process more sample- and feedback-efficient. We present an off-policy, interactive RL algorithm that capitalizes on the strengths of both feedback and off-policy learning. Specifically, we learn a reward model by actively querying a teacher’s preferences between two clips of behavior and use it to train an agent. To enable off-policy learning, we relabel all the agent’s past experience when its reward model changes. We additionally show that pre-training our agents with unsupervised exploration substantially increases the mileage of its queries. We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods, including a variety of locomotion and robotic manipulation skills. We also show that our method is able to utilize real-time human feedback to effectively prevent reward exploitation and learn new behaviors that are difficult to specify with standard reward functions. 
    more » « less
  5. Abstract Reinforcement learning (RL) systems can be complex and non-interpretable, making it challenging for non-AI experts to understand or intervene in their decisions. This is due in part to the sequential nature of RL in which actions are chosen because of their likelihood of obtaining future rewards. However, RL agents discard the qualitative features of their training, making it difficult to recover user-understandable information for “why” an action is chosen. We propose a techniqueExperiential Explanationsto generate counterfactual explanations by traininginfluence predictorsalong with the RL policy. Influence predictors are models that learn how different sources of reward affect the agent in different states, thus restoring information about how the policy reflects the environment. Two human evaluation studies revealed that participants presented with Experiential Explanations were better able to correctly guess what an agent would do than those presented with other standard types of explanation. Participants also found that Experiential Explanations are more understandable, satisfying, complete, useful, and accurate. Qualitative analysis provides information on the factors of Experiential Explanations that are most useful and the desired characteristics that participants seek from the explanations. 
    more » « less