- NSF-PAR ID:
- 10195287
- Date Published:
- Journal Name:
- Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
- Page Range / eLocation ID:
- 1334 to 1343
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Smart passenger-seeking strategies employed by taxi drivers contribute not only to drivers’ incomes, but also higher quality of service passengers received. Therefore, understanding taxi drivers’ behaviors and learning the good passenger-seeking strategies are crucial to boost taxi drivers’ well-being and public transportation quality of service. However, we observe that drivers’ preferences of choosing which area to find the next passenger are diverse and dynamic across locations and drivers. It is hard to learn the location-dependent preferences given the partial data (i.e., an individual driver's trajectory may not cover all locations). In this paper, we make the first attempt to develop conditional generative adversarial imitation learning (cGAIL) model, as a unifying collective inverse reinforcement learning framework that learns the driver's decision-making preferences and policies by transferring knowledge across taxi driver agents and across locations. Our evaluation results on three months of taxi GPS trajectory data in Shenzhen, China, demonstrate that the driver's preferences and policies learned from cGAIL are on average 34.7% more accurate than those learned from other state-of-the-art baseline approaches.more » « less
-
null (Ed.)Mobile sensing and information technology have enabled us to collect a large amount of mobility data from human decision-makers, for example, GPS trajectories from taxis, Uber cars, and passenger trip data of taking buses and trains. Understanding and learning human decision-making strategies from such data can potentially promote individual's well-being and improve the transportation service quality. Existing works on human strategy learning, such as inverse reinforcement learning, all model the decision-making process as a Markov decision process, thus assuming the Markov property. In this work, we show that such Markov property does not hold in real-world human decision-making processes. To tackle this challenge, we develop a Trajectory Generative Adversarial Imitation Learning (TrajGAIL) framework. It captures the long-term decision dependency by modeling the human decision processes as variable length Markov decision processes (VLMDPs), and designs a deep-neural-network-based framework to inversely learn the decision-making strategy from the human agent's historical dataset. We validate our framework using two real world human-generated spatial-temporal datasets including taxi driver passenger-seeking decision data and public transit trip data. Results demonstrate significant accuracy improvement in learning human decision-making strategies, when comparing to baselines with Markov property assumptions.more » « less
-
Relevance to proposal: This project evaluates the generalizability of real and synthetic training datasets which can be used to train model-free techniques for multi-agent applications. We evaluate different methods of generating training corpora and machine learning techniques including Behavior Cloning and Generative Adversarial Imitation Learning. Our results indicate that the utility-guided selection of representative scenarios to generate synthetic data can have significant improvements on model performance. Paper abstract: Crowd simulation, the study of the movement of multiple agents in complex environments, presents a unique application domain for machine learning. One challenge in crowd simulation is to imitate the movement of expert agents in highly dense crowds. An imitation model could substitute an expert agent if the model behaves as good as the expert. This will bring many exciting applications. However, we believe no prior studies have considered the critical question of how training data and training methods affect imitators when these models are applied to novel scenarios. In this work, a general imitation model is represented by applying either the Behavior Cloning (BC) training method or a more sophisticated Generative Adversarial Imitation Learning (GAIL) method, on three typical types of data domains: standard benchmarks for evaluating crowd models, random sampling of state-action pairs, and egocentric scenarios that capture local interactions. Simulated results suggest that (i) simpler training methods are overall better than more complex training methods, (ii) training samples with diverse agent-agent and agent-obstacle interactions are beneficial for reducing collisions when the trained models are applied to new scenarios. We additionally evaluated our models in their ability to imitate real world crowd trajectories observed from surveillance videos. Our findings indicate that models trained on representative scenarios generalize to new, unseen situations observed in real human crowds.more » « less
-
Agent navigation has been a crucial task in today's service and automated factories. Many efforts are to set specific rules for agents in a certain scenario to regulate the agent's behaviors. However, not all situations could be in advance considered, which might lead to terrible performance in a real-world application. In this paper, we propose CrowdGAIL, a method to learn from expert behaviors as an instructing policy, can train most 'human-like' agents in navigation problems without manually setting any reward function or beforehand regulations. First, the proposed model structure is based on generative adversarial imitation learning (GAIL), which imitates how humans take actions and move toward the target to a maximum extent, and by comparison, we prove the advantage of proximal policy optimization (PPO) to trust region policy optimization, thus, GAIL-PPO is what we base. Second, we design a special Sequential DemoBuffer compatible with the inner long short-term memory structure to apply spatiotemporal instruction on the agent's next step. Third, the paper demonstrates the potential of the model with an integrated social manner in a multi-agent scenario by considering human collision avoidance as well as social comfort distance. At last, experiments on the generated dataset from CrowdNav verify how close our model would act like a human being in the trajectory aspect and also how it could guide the multi-agents by avoiding any collision. Under the same evaluation metrics, CrowdGAIL shows better results compared with classic Social-GAN.
-
null (Ed.)Learning to make optimal decisions is a common yet complicated task. While computer agents can learn to make decisions by running reinforcement learning (RL), it remains unclear how human beings learn. In this paper, we perform the first data-driven case study on taxi drivers to validate whether humans mimic RL to learn. We categorize drivers into three groups based on their performance trends and analyze the correlations between human drivers and agents trained using RL. We discover that drivers that become more efficient at earning over time exhibit similar learning patterns to those of agents, whereas drivers that become less efficient tend to do the opposite. Our study (1) provides evidence that some human drivers do adapt RL when learning, (2) enhances the deep understanding of taxi drivers' learning strategies, (3) offers a guideline for taxi drivers to improve their earnings, and (4) develops a generic analytical framework to study and validate human learning strategies.more » « less