skip to main content


Title: Iron Oxide (U–Th)/He Thermochronology: New Perspectives on Faults, Fluids, and Heat
Fault zones record the dynamic motion of Earth’s crust and are sites of heat exchange, fluid–rock interaction, and mineralization. Episodic or long-lived fluid flow, frictional heating, and/or deformation can induce open-system chemical behavior and make dating fault zone processes challenging. Iron oxides are common in a variety of geologic settings, including faults and fractures, and can grow at surface-to magmatic temperatures. Recently, iron oxide (U–Th)/He thermochronology, coupled with microtextural and trace element analyses, has enabled new avenues of research into the timing and nature of fluid–rock interactions and deformation. These constraints are important for understanding fault zone evolution in space and time.  more » « less
Award ID(s):
1654628
NSF-PAR ID:
10225188
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Elements
Volume:
16
Issue:
5
ISSN:
1811-5209
Page Range / eLocation ID:
319 to 324
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy based around the use of seabed rock drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in hopes of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before and after drilling; supply synthetic tracers during drilling for contamination assessment; gather downhole electrical resistivity and magnetic susceptibility logs for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed rock drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.3 to 16.44 meters below seafloor and core recoveries as high as 75% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 revealed a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential, temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans, as well as verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, Mid-Atlantic Ridge, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif. 
    more » « less
  2. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 was undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough by (1) coring at four sites, including an active fault near the deformation front, the upper plate above the high-slip SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll Seamount, and (2) installing borehole observatories in an active thrust near the deformation front and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372 (26 November 2017–4 January 2018; see the Expedition 372 Preliminary Report for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 1–2 years and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. Sampling of material from the sedimentary section and oceanic basement of the subducting plate reveals the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate all the way to the trench, indicating that the shallow thrust fault zone targeted during Expedition 375 may also lie in the SSE rupture area. Hence, sampling at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expedition 375 (together with the Hikurangi subduction LWD component of Expedition 372) was designed to address three fundamental scientific objectives: (1) characterize the state and composition of the incoming plate and shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; (2) characterize material properties, thermal regime, and stress conditions in the upper plate above the core of the SSE source region; and (3) install observatories at an active thrust near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  3. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structural character of material that is transported downdip into the SSE source region. A recent seafloor geodetic experiment raises the possibility that SSEs at northern Hikurangi may propagate to the trench, indicating that the shallow thrust fault (the Pāpaku fault) targeted during Expeditions 372 and 375 may also lie in the SSE rupture area and host a portion of the slip in these events. Hence, sampling and logging at this location provides insights into the composition, physical properties, and architecture of a shallow fault that may host slow slip. Expeditions 372 and 375 were designed to address three fundamental scientific objectives: 1. Characterize the state and composition of the incoming plate and shallow fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth and which may itself host shallow slow slip; 2. Characterize material properties, thermal regime, and stress conditions in the upper plate directly above the SSE source region; and 3. Install observatories in the Pāpaku fault near the deformation front and in the upper plate above the SSE source to measure temporal variations in deformation, temperature, and fluid flow. The observatories will monitor volumetric strain (via pore pressure as a proxy) and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less
  4. null (Ed.)
    Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 aims to investigate the processes and in situ conditions that underlie subduction zone SSEs at northern Hikurangi through coring of the frontal thrust, upper plate, and incoming sedimentary succession and through installation of borehole observatories in the frontal thrust and upper plate above the slow slip source area. Logging-while-drilling (LWD) data for this project will be acquired as part of Expedition 372 (beginning in November 2017; see the Expedition 372 Scientific Prospectus for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 2 years and thus provide an excellent setting to monitor deformation and associated chemical and physical properties surrounding the SSE source area throughout the slow slip cycle. Sampling material from the sedimentary section and oceanic basement of the subducting plate and from the primary active thrust in the outer wedge near the trench will reveal the rock properties, composition, and lithologic and structural character of the material transported downdip to the known SSE source region. A recent seafloor geodetic experiment shows the possibility that SSEs at northern Hikurangi may propagate all the way to the trench, indicating that the shallow fault zone target for Expedition 375 may lie within the SSE rupture area. Four primary sites are planned for coring, and observatories will be installed at two of these sites. Expedition 375 (together with the Hikurangi subduction component of Expedition 372) is designed to address three fundamental scientific objectives: (1) characterize the state and composition of the incoming plate and shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock at greater depth; (2) characterize material properties, thermal regime, and stress conditions in the upper plate above the SSE source region; and (3) install observatories at the frontal thrust and in the upper plate above the SSE source to measure temporal variations in deformation, fluid flow, and seismicity. The observatories will monitor deformation and the evolution of physical, hydrological, and chemical properties throughout the SSE cycle. Together, the coring, logging, and observatory data will test a suite of hypotheses about the fundamental mechanics and behavior of slow slip events and their relationship to great earthquakes along the subduction interface. 
    more » « less
  5. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 372 combines two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (Proposal 841-APL). Our study area on the Hikurangi margin east of New Zealand provides unique locations for addressing both research topics. Gas hydrates have long been suspected of being involved in seafloor failure; not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, icelike gas hydrate in sediment pores is generally thought to increase seafloor strength, as confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may destabilize the seafloor, potentially causing submarine landslides. The Tuaheni Landslide Complex on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinchout of the base of gas hydrate stability (BGHS) on the seafloor. We therefore hypothesize that gas hydrate may be linked to creeping by (1) repeated small-scale sliding at the BGHS, in a variation of the conventional model linking gas hydrates and seafloor failure; (2) overpressure at the BGHS due to a permeability reduction linked to gas hydrates, which may lead to hydrofracturing, weakening the seafloor and allowing transmission of pressure into the gas hydrate stability zone; or (3) icelike viscous deformation of gas hydrates in sediment pores, similar to onshore rock glaciers. The latter two processes imply that gas hydrate itself is involved in creeping, constituting a paradigm shift in relating gas hydrates to submarine slope failure. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. We have devised a coring and logging program to test our hypotheses. SSEs at subduction zones are an enigmatic form of creeping fault behavior. At the northern Hikurangi subduction margin (HSM), they are among the best-documented and shallowest on Earth. They recur about every 2 y and may extend close to the trench, where clastic and pelagic sediments about 1.0–1.5 km thick overlie the subducting, seamount-studded Hikurangi Plateau. The northern HSM thus provides an excellent setting to use IODP capabilities to discern the mechanisms behind slow slip fault behavior, as proposed in IODP Proposal 781A-Full. The objectives of Proposal 781A-Full will be implemented across two related IODP expeditions, 372 and 375. Expedition 372 will undertake logging while drilling (LWD) at three sites targeting the upper plate (midslope basin, proposed Site HSM-01A), the frontal thrust (proposed Site HSM-18A), and the subducting section in the trench (proposed Site HSM-05A). Expedition 375 will undertake coring at the same sites, as well as an additional seamount site on the subducting plate, and implement the borehole observatory objectives. The data from each expedition will be shared between both scientific parties. Collectively, the LWD and coring data will be used to (1) characterize the compositional, structural, thermal, and diagenetic state of the incoming plate and the shallow plate boundary fault near the trench, which comprise the protolith and initial conditions for fault zone rock associated with SSEs at greater depth, and (2) characterize the material properties, thermal regime, and stress conditions in the upper plate above the SSE source region. These data will be used during Expedition 375 to guide the installation of CORK observatories at the frontal thrust and in the upper plate above the SSE source to monitor temporal variations in deformation, fluid flow, seismicity, and physical and chemical properties throughout the SSE cycle (Saffer et al., 2017). Together, these data will test a suite of hypotheses about the fundamental mechanics and behavior of SSEs and their relationship to great earthquakes along the subduction interface. 
    more » « less