International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy based around the use of seabed rock drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in hopes of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before and after drilling; supply synthetic tracers during drilling for contaminationmore »
Iron Oxide (U–Th)/He Thermochronology: New Perspectives on Faults, Fluids, and Heat
Fault zones record the dynamic motion of Earth’s crust and are sites of heat exchange, fluid–rock interaction, and mineralization. Episodic or long-lived fluid flow, frictional heating, and/or deformation can induce open-system chemical behavior and make dating fault zone processes challenging. Iron oxides are common in a variety of geologic settings, including faults and fractures, and can grow at surface-to magmatic temperatures. Recently, iron oxide (U–Th)/He thermochronology, coupled with microtextural and trace element analyses, has enabled new avenues of research into the timing and nature of fluid–rock interactions and deformation. These constraints are important for understanding fault zone evolution in space and time.
- Award ID(s):
- 1654628
- Publication Date:
- NSF-PAR ID:
- 10225188
- Journal Name:
- Elements
- Volume:
- 16
- Issue:
- 5
- Page Range or eLocation-ID:
- 319 to 324
- ISSN:
- 1811-5209
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 was undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough by (1) coring at four sites, including an active fault near the deformation front, the upper plate above the high-slip SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll Seamount, and (2) installing borehole observatories in an active thrust near the deformation front and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372 (26 November 2017–4 January 2018; see the Expedition 372 Preliminary Report for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 1–2 years and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. Sampling of material from the sedimentary section and oceanic basement of the subducting plate reveals the rock properties, composition, lithology, and structural character of material that is transported downdipmore »
-
Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expeditions 372 and 375 were undertaken to investigate the processes and in situ conditions that underlie subduction zone SSEs at the northern Hikurangi Trough. We accomplished this goal by (1) coring and geophysical logging at four sites, including penetration of an active thrust fault (the Pāpaku fault) near the deformation front, the upper plate above the SSE source region, and the incoming sedimentary succession in the Hikurangi Trough and atop the Tūranganui Knoll seamount; and (2) installing borehole observatories in the Pāpaku fault and in the upper plate overlying the slow slip source region. Logging-while-drilling (LWD) data for this project were acquired as part of Expedition 372, and coring, wireline logging, and observatory installations were conducted during Expedition 375. Northern Hikurangi subduction margin SSEs recur every 1–2 y and thus provide an ideal opportunity to monitor deformation and associated changes in chemical and physical properties throughout the slow slip cycle. In situ measurements and sampling of material from the sedimentary section and oceanic basement of the subducting plate reveal the rock properties, composition, lithology, and structuralmore »
-
Slow slip events (SSEs) at the northern Hikurangi subduction margin, New Zealand, are among the best-documented shallow SSEs on Earth. International Ocean Discovery Program Expedition 375 aims to investigate the processes and in situ conditions that underlie subduction zone SSEs at northern Hikurangi through coring of the frontal thrust, upper plate, and incoming sedimentary succession and through installation of borehole observatories in the frontal thrust and upper plate above the slow slip source area. Logging-while-drilling (LWD) data for this project will be acquired as part of Expedition 372 (beginning in November 2017; see the Expedition 372 Scientific Prospectus for further details on the LWD acquisition program). Northern Hikurangi subduction margin SSEs recur every 2 years and thus provide an excellent setting to monitor deformation and associated chemical and physical properties surrounding the SSE source area throughout the slow slip cycle. Sampling material from the sedimentary section and oceanic basement of the subducting plate and from the primary active thrust in the outer wedge near the trench will reveal the rock properties, composition, and lithologic and structural character of the material transported downdip to the known SSE source region. A recent seafloor geodetic experiment shows the possibility that SSEs at northernmore »
-
International Ocean Discovery Program (IODP) Expedition 372 combines two research topics, slow slip events (SSEs) on subduction faults (IODP Proposal 781A-Full) and actively deforming gas hydrate–bearing landslides (Proposal 841-APL). Our study area on the Hikurangi margin east of New Zealand provides unique locations for addressing both research topics. Gas hydrates have long been suspected of being involved in seafloor failure; not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, icelike gas hydrate in sediment pores is generally thought to increase seafloor strength, as confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may destabilize the seafloor, potentially causing submarine landslides. The Tuaheni Landslide Complex on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinchout of the base of gas hydrate stability (BGHS) on the seafloor. We therefore hypothesize that gas hydrate may be linked to creeping by (1) repeated small-scale sliding at the BGHS, in a variation of the conventional model linking gas hydrates and seafloor failure; (2) overpressure at the BGHS due to a permeability reduction linked to gas hydrates, which maymore »