We determine which faithful irreducible representations V of a simple linear algebraic group G are generically free for Lie(G), i.e., which V have an open subset consisting of vectors whose stabilizer in Lie(G) is zero. This relies on bounds on dim V obtained in prior work (part I), which reduce the problem to a finite number of possibilities for G and highest weights for V , but still infinitely many characteristics. The remaining cases are handled individually, some by computer calculation. These results were previously known for fields of characteristic zero, although new phenomena appear in prime characteristic; we provide a shorter proof that gives the result with very mild hypotheses on the characteristic. (The few characteristics not treated here are settled in part III.) These results are related to questions about invariants and the existence of a stabilizer in general position.
more »
« less
Generically free representations I: Large representations
This paper concerns a faithful representation V of a simple linear algebraic group G. Under mild assumptions, we show that if V is large enough, then the Lie algebra of G acts generically freely on V. That is, the stabilizer in Lie.G/ of a generic vector in V is zero. The bound on dim V grows like the square of the rank and holds with only mild hypotheses on the characteristic of the underlying field. The proof relies on results on generation of Lie algebras by conjugates of an element that may be of independent interest. We use the bound in subsequent works to determine which irreducible faithful representations are generically free, with no hypothesis on the characteristic of the field. This in turn has applications to the question of which representations have a stabilizer in general position.
more »
« less
- Award ID(s):
- 1901595
- PAR ID:
- 10225222
- Date Published:
- Journal Name:
- Algebra and number theory
- Volume:
- 14
- Issue:
- 6
- ISSN:
- 1112-265X
- Page Range / eLocation ID:
- 1577--1611
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In parts I and II, we determined which faithful irreducible representations V of a simple linear algebraic group G are generically free for Lie(G), i.e., which V have an open subset consisting of vectors whose stabilizer in Lie(G) is zero, with some assumptions on the characteristic of the field. This paper settles the remaining cases, which are of a different nature because Lie(G) has a more complicated structure and there need not exist general dimension bounds of the sort that exist in good characteristic.more » « less
-
Let $$F$$ be a non-archimedean local field of residual characteristic $$p \neq 2$$ . Let $$G$$ be a (connected) reductive group over $$F$$ that splits over a tamely ramified field extension of $$F$$ . We revisit Yu's construction of smooth complex representations of $G(F)$ from a slightly different perspective and provide a proof that the resulting representations are supercuspidal. We also provide a counterexample to Proposition 14.1 and Theorem 14.2 in Yu [ Construction of tame supercuspidal representations , J. Amer. Math. Soc. 14 (2001), 579–622], whose proofs relied on a typo in a reference.more » « less
-
Abstract The deep theory of approximate subgroups establishes three-step product growth for subsets of finite simple groups $$G$$ of Lie type of bounded rank. In this paper, we obtain two-step growth results for representations of such groups $$G$$ (including those of unbounded rank), where products of subsets are replaced by tensor products of representations. Let $$G$$ be a finite simple group of Lie type and $$\chi $$ a character of $$G$$. Let $$|\chi |$$ denote the sum of the squares of the degrees of all (distinct) irreducible characters of $$G$$ that are constituents of $$\chi $$. We show that for all $$\delta>0$$, there exists $$\epsilon>0$$, independent of $$G$$, such that if $$\chi $$ is an irreducible character of $$G$$ satisfying $$|\chi | \le |G|^{1-\delta }$$, then $$|\chi ^2| \ge |\chi |^{1+\epsilon }$$. We also obtain results for reducible characters and establish faster growth in the case where $$|\chi | \le |G|^{\delta }$$. In another direction, we explore covering phenomena, namely situations where every irreducible character of $$G$$ occurs as a constituent of certain products of characters. For example, we prove that if $$|\chi _1| \cdots |\chi _m|$$ is a high enough power of $|G|$, then every irreducible character of $$G$$ appears in $$\chi _1\cdots \chi _m$$. Finally, we obtain growth results for compact semisimple Lie groups.more » « less
-
We show that, in good residual characteristic, most supercuspidal representations of a tamely ramified reductive p-adic group G arise from pairs (S,\theta), where S is a tame elliptic maximal torus of G, and \theta is a character of S satisfying a simple root-theoretic property. We then give a new expression for the roots of unity that appear in the Adler-DeBacker-Spice character formula for these supercuspidal representations and use it to show that this formula bears a striking resemblance to the character formula for discrete series representations of real reductive groups. Led by this, we explicitly construct the local Langlands correspondence for these supercuspidal representations and prove stability and endoscopic transfer in the case of toral representations. In large residual characteristic this gives a construction of the local Langlands correspondence for almost all supercuspidal representations of reductive p-adic groups.more » « less
An official website of the United States government

