Abstract We prove character ratio bounds for finite exceptional groups $G(q)$ of Lie type. These take the form $$\dfrac{|\chi (g)|}{\chi (1)} \le \dfrac{c}{q^k}$$ for all nontrivial irreducible characters $$\chi$$ and nonidentity elements $$g$$, where $$c$$ is an absolute constant, and $$k$$ is a positive integer. Applications are given to bounding mixing times for random walks on these groups and also diameters of their McKay graphs.
more »
« less
Representations and Tensor Product Growth
Abstract The deep theory of approximate subgroups establishes three-step product growth for subsets of finite simple groups $$G$$ of Lie type of bounded rank. In this paper, we obtain two-step growth results for representations of such groups $$G$$ (including those of unbounded rank), where products of subsets are replaced by tensor products of representations. Let $$G$$ be a finite simple group of Lie type and $$\chi $$ a character of $$G$$. Let $$|\chi |$$ denote the sum of the squares of the degrees of all (distinct) irreducible characters of $$G$$ that are constituents of $$\chi $$. We show that for all $$\delta>0$$, there exists $$\epsilon>0$$, independent of $$G$$, such that if $$\chi $$ is an irreducible character of $$G$$ satisfying $$|\chi | \le |G|^{1-\delta }$$, then $$|\chi ^2| \ge |\chi |^{1+\epsilon }$$. We also obtain results for reducible characters and establish faster growth in the case where $$|\chi | \le |G|^{\delta }$$. In another direction, we explore covering phenomena, namely situations where every irreducible character of $$G$$ occurs as a constituent of certain products of characters. For example, we prove that if $$|\chi _1| \cdots |\chi _m|$$ is a high enough power of $|G|$, then every irreducible character of $$G$$ appears in $$\chi _1\cdots \chi _m$$. Finally, we obtain growth results for compact semisimple Lie groups.
more »
« less
- Award ID(s):
- 2200850
- PAR ID:
- 10501233
- Publisher / Repository:
- International Mathematics Research Notices
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2023
- Issue:
- 14
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 12477-12511
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The classical Itô-Michler theorem on character degrees of finite groups asserts that if the degree of every complex irreducible character of a finite group G is coprime to a given prime p , then G has a normal Sylow p -subgroup. We propose a new direction to generalize this theorem by introducing an invariant concerning character degrees. We show that if the average degree of linear and even-degree irreducible characters of G is less than 4/3 then G has a normal Sylow 2-subgroup, as well as corresponding analogues for real-valued characters and strongly real characters. These results improve on several earlier results concerning the Itô-Michler theorem.more » « less
-
Abstract Given a multigraph$$G=(V,E)$$, the edge-coloring problem (ECP) is to color the edges ofGwith the minimum number of colors so that no two adjacent edges have the same color. This problem can be naturally formulated as an integer program, and its linear programming relaxation is referred to as the fractional edge-coloring problem (FECP). The optimal value of ECP (resp. FECP) is called the chromatic index (resp. fractional chromatic index) ofG, denoted by$$\chi '(G)$$(resp.$$\chi ^*(G)$$). Let$$\Delta (G)$$be the maximum degree ofGand let$$\Gamma (G)$$be the density ofG, defined by$$\begin{aligned} \Gamma (G)=\max \left\{ \frac{2|E(U)|}{|U|-1}:\,\, U \subseteq V, \,\, |U|\ge 3 \hspace{5.69054pt}\textrm{and} \hspace{5.69054pt}\textrm{odd} \right\} , \end{aligned}$$whereE(U) is the set of all edges ofGwith both ends inU. Clearly,$$\max \{\Delta (G), \, \lceil \Gamma (G) \rceil \}$$is a lower bound for$$\chi '(G)$$. As shown by Seymour,$$\chi ^*(G)=\max \{\Delta (G), \, \Gamma (G)\}$$. In the early 1970s Goldberg and Seymour independently conjectured that$$\chi '(G) \le \max \{\Delta (G)+1, \, \lceil \Gamma (G) \rceil \}$$. Over the past five decades this conjecture, a cornerstone in modern edge-coloring, has been a subject of extensive research, and has stimulated an important body of work. In this paper we present a proof of this conjecture. Our result implies that, first, there are only two possible values for$$\chi '(G)$$, so an analogue to Vizing’s theorem on edge-colorings of simple graphs holds for multigraphs; second, although it isNP-hard in general to determine$$\chi '(G)$$, we can approximate it within one of its true value, and find it exactly in polynomial time when$$\Gamma (G)>\Delta (G)$$; third, every multigraphGsatisfies$$\chi '(G)-\chi ^*(G) \le 1$$, and thus FECP has a fascinating integer rounding property.more » « less
-
Let X =G/Γ, where G is a connected Lie group and Γ is a lattice in G. Let O be an open subset of X, and let F = {g_t : t ≥ 0} be a one-parameter subsemigroup of G. Consider the set of points in X whose F-orbit misses O; it has measure zero if the flow is ergodic. It has been conjectured that, assuming ergodicity, this set has Hausdorff dimension strictly smaller than the dimension of X. This conjecture has been proved when X is compact or when G is a simple Lie group of real rank 1, or, most recently, for certain flows on the space of lattices. In this paper we prove this conjecture for arbitrary Addiagonalizable flows on irreducible quotients of semisimple Lie groups. The proof uses exponential mixing of the flow together with the method of integral inequalities for height functions on G/Γ. We also derive an application to jointly Dirichlet-Improvable systems of linear forms.more » « less
-
Abstract For every integer k there exists a bound $$B=B(k)$$ B = B ( k ) such that if the characteristic polynomial of $$g\in \textrm{SL}_n(q)$$ g ∈ SL n ( q ) is the product of $$\le k$$ ≤ k pairwise distinct monic irreducible polynomials over $$\mathbb {F}_q$$ F q , then every element x of $$\textrm{SL}_n(q)$$ SL n ( q ) of support at least B is the product of two conjugates of g . We prove this and analogous results for the other classical groups over finite fields; in the orthogonal and symplectic cases, the result is slightly weaker. With finitely many exceptions ( p , q ), in the special case that $$n=p$$ n = p is prime, if g has order $$\frac{q^p-1}{q-1}$$ q p - 1 q - 1 , then every non-scalar element $$x \in \textrm{SL}_p(q)$$ x ∈ SL p ( q ) is the product of two conjugates of g . The proofs use the Frobenius formula together with upper bounds for values of unipotent and quadratic unipotent characters in finite classical groups.more » « less
An official website of the United States government

