Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Let G G be a finite group admitting a coprime automorphism α \alpha of order e e . Denote by I G ( α ) I_G(\alpha ) the set of commutators g − 1 g α g^{-1}g^\alpha , where g ∈ G g\in G , and by [ G , α ] [G,\alpha ] the subgroup generated by I G ( α ) I_G(\alpha ) . We study the impact of I G ( α ) I_G(\alpha ) on the structure of [ G , α ] [G,\alpha ] . Suppose that each subgroup generated by a subset of I G ( α ) I_G(\alpha ) can be generated by at most r r elements. We show that the rank of [ G , α ] [G,\alpha ] is ( e , r ) (e,r) -bounded. Along the way, we establish several results of independent interest. In particular, we prove that if every element of I G ( α ) I_G(\alpha ) has odd order, then [ G , α ] [G,\alpha ] has odd order too. Further, if every pair of elements from I G ( α ) I_G(\alpha ) generates a soluble, or nilpotent, subgroup, then [ G , α ] [G,\alpha ] is soluble, or respectively nilpotent.more » « less
-
null (Ed.)A group G is said to be 3/2-generated if every nontrivial element belongs to a generating pair. It is easy to see that if G has this property, then every proper quotient of G is cyclic. In this paper we prove that the converse is true for finite groups, which settles a conjecture of Breuer, Guralnick and Kantor from 2008. In fact, we prove a much stronger result, which solves a problem posed by Brenner and Wiegold in 1975. Namely, if G is a finite group and every proper quotient of G is cyclic, then for any pair of nontrivial elements x1, x2 ϵ G, there exists y ϵ G such that G = ⟨x1, y⟩ = ⟨x2, y⟩. In other words, s(G) ⩾ 2, where s(G) is the spread of G. Moreover, if u(G) denotes the more restrictive uniform spread of G, then we can completely characterise the finite groups G with u(G) = 0 and u(G) = 1. To prove these results, we first establish a reduction to almost simple groups. For simple groups, the result was proved by Guralnick and Kantor in 2000 using probabilistic methods, and since then the almost simple groups have been the subject of several papers. By combining our reduction theorem and this earlier work, it remains to handle the groups with socle an exceptional group of Lie type, and this is the case we treat in this paper.more » « less
An official website of the United States government
