skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Limit Point of the Pentagram Map and Infinitesimal Monodromy
Abstract The pentagram map takes a planar polygon $$P$$ to a polygon $$P^{\prime }$$ whose vertices are the intersection points of the consecutive shortest diagonals of $$P$$. The orbit of a convex polygon under this map is a sequence of polygons that converges exponentially to a point. Furthermore, as recently proved by Glick, coordinates of that limit point can be computed as an eigenvector of a certain operator associated with the polygon. In the present paper, we show that Glick’s operator can be interpreted as the infinitesimal monodromy of the polygon. Namely, there exists a certain natural infinitesimal perturbation of a polygon, which is again a polygon but in general not closed; what Glick’s operator measures is the extent to which this perturbed polygon does not close up.  more » « less
Award ID(s):
2008021
PAR ID:
10225284
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The pentagram map takes a planar polygon $$P$$ to a polygon $P'$ whose vertices are the intersection points of consecutive shortest diagonals of $$P$$ . This map is known to interact nicely with Poncelet polygons, that is, polygons which are simultaneously inscribed in a conic and circumscribed about a conic. A theorem of Schwartz states that if $$P$$ is a Poncelet polygon, then the image of $$P$$ under the pentagram map is projectively equivalent to $$P$$ . In the present paper, we show that in the convex case this property characterizes Poncelet polygons: if a convex polygon is projectively equivalent to its pentagram image, then it is Poncelet. The proof is based on the theory of commuting difference operators, as well as on properties of real elliptic curves and theta functions. 
    more » « less
  2. Abstract. We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies in the algebra of symmetric functions embedded in the elliptic Hall algebra of Burban and Schiffmann. As a corollary, we deduce an explicit raising operator formula for the nabla operator applied to any LLT polynomial. In particular, we obtain a formula for ∇msλ which serves as a starting point for our proof of the Loehr-Warrington conjecture in a companion paper to this one 
    more » « less
  3. Abstract We identify certain combinatorially defined rational functions which, under the shuffle to Schiffmann algebra isomorphism, map to LLT polynomials in any of the distinguished copies Λ ( X m , n ) E \Lambda(X^{m{,}n})\subset\mathcal{E}of the algebra of symmetric functions embedded in the elliptic Hall algebra ℰ of Burban and Schiffmann.As a corollary, we deduce an explicit raising operator formula for the ∇ operator applied to any LLT polynomial.In particular, we obtain a formula for m s λ \nabla^{m}s_{\lambda}which serves as a starting point for our proof of the Loehr–Warrington conjecture in a companion paper to this one. 
    more » « less
  4. Abstract In this article, we continue the study of a certain family of 2-Calabi–Yau tilted algebras, called dimer tree algebras. The terminology comes from the fact that these algebras can also be realized as quotients of dimer algebras on a disk. They are defined by a quiver with potential whose dual graph is a tree, and they are generally of wild representation type. Given such an algebra $$B$$, we construct a polygon $$\mathcal {S}$$ with a checkerboard pattern in its interior, which defines a category $$\text {Diag}(\mathcal {S})$$. The indecomposable objects of $$\text {Diag}(\mathcal {S})$$ are the 2-diagonals in $$\mathcal {S}$$, and its morphisms are certain pivoting moves between the 2-diagonals. We prove that the category $$\text {Diag}(\mathcal {S})$$ is equivalent to the stable syzygy category of the algebra $$B$$. This result was conjectured by the authors in an earlier paper, where it was proved in the special case where every chordless cycle is of length three. As a consequence, we conclude that the number of indecomposable syzygies is finite, and moreover the syzygy category is equivalent to the 2-cluster category of type $$\mathbb {A}$$. In addition, we obtain an explicit description of the projective resolutions, which are periodic. Finally, the number of vertices of the polygon $$\mathcal {S}$$ is a derived invariant and a singular invariant for dimer tree algebras, which can be easily computed form the quiver. 
    more » « less
  5. Given a smooth quasi-projective complex algebraic variety $$\mathcal{S}$$, we prove that there are only finitely many Hodge-generic non-isotrivial families of smooth projective hypersurfaces over $$\mathcal{S}$$ of degree $$d$$ in $$\mathbb{P}_{\mathbb C}^{n+1}$$. We prove that the finiteness is uniform in $$\mathcal{S}$$ and give examples where the result is sharp. We also prove similar results for certain complete intersections in $$\mathbb{P}_{\mathbb C}^{n+1}$$ of higher codimension and more generally for algebraic varieties whose moduli space admits a period map that satisfies the infinitesimal Torelli theorem. 
    more » « less