Upon photoexcitation, molecules can undergo numerous complex processes, such as isomerization and roaming, leading to changes in the molecular and electronic structure. Here, we report on the time-resolved ultrafast nuclear dynamics, initiated by laser ionization, in the two structural isomers, 1- and 2-propanol, using a combination of pump–probe spectroscopy and coincident Coulomb explosion imaging. Our measurements, paired with quantum chemistry calculations, identify the mechanisms for the observed two- and three-body dissociation channels for both isomers. In particular, the fragmentation channel of 2-propanol associated with the loss of CH 3 shows possible evidence of methyl roaming. Moreover, the electronic structure of this roaming methyl fragment could be responsible for the enhanced ionization also observed for this channel. Finally, comparison with similar studies done on ethanol and acetonitrile helps establish a correlation between the length of the alkyl chain and the likelihood of hydrogen migration.
more »
« less
Ultrafast laser-induced isomerization dynamics in Acetonitrile
Isomerization induced by laser ionization in acetonitrile (CH3CN) was investigated using pump−probe spectroscopy in combination with ion−ion coincident Coulomb explosion imaging. We deduced five primary channels indicating direct C−C breakup, single and double hydrogen migration, and H and H2 dissociation in the acetonitrile cation. Surprisingly, the hydrogen-migration channels dominate over direct fragmentation. This observation is supported by quantum chemistry calculations showing that isomerization through single and double hydrogen migration leads to very stable linear and ring isomers, with most of them more stable than the original linear structure following ionization of the parent molecule. This is unlike most molecules investigated previously using similar schemes.By varying the delay between the pump and probe pulses, we have also determined the time scales of the corresponding dynamical processes. Isomerization typically occurs in a few hundred femtoseconds, a time scale that is comparable to that found for H and H2 dissociation and direct molecular fragmentation.
more »
« less
- Award ID(s):
- 2006269
- PAR ID:
- 10225287
- Date Published:
- Journal Name:
- The journal of physical chemistry letters
- Volume:
- 11
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 6724−6729
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Acetaldehyde cations (CH 3 CHO + ) were prepared using single-photon vacuum ultraviolet ionization of CH 3 CHO in a molecular beam and the fragmentation dynamics explored over the photolysis wavelength range 390–210 nm using velocity-map ion imaging and photofragment yield (PHOFY) spectroscopy. Four fragmentation channels are characterized: CH 3 CHO + → C 2 H 3 O + + H (I), CH 3 CHO + → HCO + + CH 3 (II), CH 3 CHO + → CH 3 + + HCO (III), CH 3 CHO + → CH 4 + + CO (IV). Channels (I), (II), and (IV) are observed across the full photolysis wavelength range while channel (III) is observed only at λ < 317 nm. Maximum fragment ion yields are obtained at ∼250 nm. Ion images were recorded over the range 316–228 nm, which corresponds to initial excitation to the B̃ 2 A′ and C̃ 2 A′ states of CH 3 CHO + . The speed and angular distributions are distinctly different for each detected ion and show evidence of both statistical and dynamical fragmentation pathways. At longer wavelengths, fragmentation via channel (I) leads to modest translational energies ( E T ), consistent with dissociation over a small barrier and production of highly internally excited CH 3 CO + . Additional components with E INT greater than the CH 3 CO + secondary dissociation threshold appear at shorter wavelengths and are assigned to fragmentation products of vinyl alcohol cation or oxirane cation formed by isomerization of energized CH 3 CHO + . The E T distribution observed for channel (III) products peaks at zero but is notably colder than that predicted by phase space theory, particularly at longer photolysis wavelengths. The colder-than-statistical E T distributions are attributed to contributions from secondary fragmentation of energized CH 3 CO + formed via channel (I), which are attenuated by CH 3 CHO + isomerization at shorter wavelengths. Fragmentation via channels (II) and (IV) results in qualitatively similar outcomes, with evidence of isotropic statistical components at low- E T and anisotropic components due to excited state dynamics at higher E T .more » « less
-
We present an investigation of the relaxation dynamics of deuterated water molecules after direct photo-double ionization at 61 eV. We focus on the very rare D+ + O+ + D reaction channel in which the sequential fragmentation mechanisms were found to dominate the dynamics. Aided by theory, the state-selective formation and breakup of the transient OD+(a1Δ, b1Σ+) is traced, and the most likely dissociation path—OD+: a1Δ or b1Σ+ → A 3Π → X 3Σ− → B 3Σ−—involving a combination of spin–orbit and non-adiabatic charge transfer transitions is determined. The multi-step transition probability of this complex transition sequence in the intermediate fragment ion is directly evaluated as a function of the energy of the transient OD+ above its lowest dissociation limit from the measured ratio of the D+ + O+ + D and competing D+ + D+ + O sequential fragmentation channels, which are measured simultaneously. Our coupled-channel time-dependent dynamics calculations reproduce the general trends of these multi-state relative transition rates toward the three-body fragmentation channels.more » « less
-
Abstract We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3d) and C(1s) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH3+fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CHx+fragments (withx = 0, …, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations.more » « less
-
The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum.more » « less
An official website of the United States government

