skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Universal features of the shape of elastic fibres in shear flow
We present a numerical study of the dynamics of an elastic fibre in a shear flow at low Reynolds number, and seek to understand several aspects of the fibre's motion using the equations for slender-body theory coupled to the elastica. The numerical simulations are performed in the bead-spring framework including hydrodynamic interactions in two theoretical schemes: the generalized Rotne–Prager–Yamakawa model and a multipole expansion corrected for lubrication forces. In general, the two schemes yield similar results, including for the dominant scaling features of the shape that we identify. In particular, we focus on the evolution of an initially straight fibre oriented in the flow direction and show that the time scales of fibre bending, curling and rotation, which depend on its length and stiffness, determine the overall motion and evolution of the shapes. We document several characteristic time scales and curvatures representative of the shape that vary as power laws of the bending stiffness and fibre length. The numerical results are further supported by an interpretation using an elastica model.  more » « less
Award ID(s):
1661672
PAR ID:
10225330
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
914
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work investigates the steady-state nonlinear dynamics of a large-deformation flexible beam model under oscillatory flow. A flexible beam dynamics model combined with hydrodynamic loading is employed using large deformation beam theory. The equations of motion discretised using the high-order finite element method (FEM) are solved in the time domain using the efficient Galerkin averaging-incremental harmonic balance (EGA-IHB) method. The arc-length continuation method and Hsu’s method trace stable and unstable solutions. The numerical results are in accordance with the physical experimental results and reveal multiple resonance phenomena. Low-order resonances exhibit hardening due to geometric nonlinearity, while higher-order resonances transition from softening to hardening influenced by inertia and geometric nonlinearity. A strong coupling between tensile and bending deformation is observed. The axial deformation is dominated by inertia, while bending resonance is influenced by an interplay between inertia, structure stiffness, and fluid drag. Finally, the effects of two dimensionless parameters, Keulegan and Carpenter number (KC) and Cauchy number (Ca), on the response of the flexible beam are discussed. 
    more » « less
  2. Abstract Three-dimensional dynamics of flexible fibers in shear flow are studied numerically, with a qualitative comparison to experiments. Initially, the fibers are straight, with different orientations with respect to the flow. By changing the rotation speed of a shear rheometer, we change the ratioAof bending to shear forces. We observe fibers in the flow-vorticity plane, which gives insight into the motion out of the shear plane. The numerical simulations of moderately flexible fibers show that they rotate along effective Jeffery orbits, and therefore the fiber orientation rapidly becomes very close to the flow-vorticity plane, on average close to the flow direction, and the fiber remains in an almost straight configuration for a long time. This ‘ordering’ of fibers is temporary since they alternately bend and straighten while tumbling. We observe numerically and experimentally that if the fibers are initially in the compressional region of the shear flow, they can undergo compressional buckling, with a pronounced deformation of shape along their whole length during a short time, which is in contrast to the typical local bending that originates over a long time from the fiber ends. We identify differences between local and compressional bending and discuss their competition, which depends on the initial orientation of the fiber and the bending stiffness ratioA. There are two main finding. First, the compressional buckling is limited to a certain small range of the initial orientations, excluding those from the flow-vorticity plane. Second, since fibers straighten in the flow-vorticity plane while tumbling, the compressional buckling is transient—it does not appear for times longer than 1/4 of the Jeffery period. For larger times, bending of fibers is always driven by their ends. 
    more » « less
  3. Quasi-static peeling of a finite-length, flexible, horizontal beam (strip, thin film) from a horizontal substrate is considered. The displaced end of the beam is subjected to an upward deflection or to a rotation. The action of the adhesive is modeled as a Winkler foundation, and debonding is based on the common fracture mechanics approach. The behavior is examined from the application of loading to the initiation of peeling and then to complete detachment of the beam from the substrate. During at least a portion of the debonding process, the model corresponds to what traditionally has been considered a short beam on an elastic foundation. In the analysis, the beam is modeled as an elastica, so that bending is paramount and large displacements are allowed. The effects of the relative foundation stiffness to the beam bending stiffness, the work of adhesion, and the length, self-weight, extensibility, and initial unbonded length of the beam are investigated. In addition, experiments are conducted to complement the analysis. 
    more » « less
  4. In the present study, the flow inside a real size Diesel fuel injector nozzle was modeled and analyzed under different boundary conditions using ANSYS-Fluent software. A validation was performed by comparing our numerical results with previous experimental data for a rectangular shape nozzle. Schnerr-Sauer cavitation model, which was selected for this study, was also validated. Two-equation k-ε turbulence model was selected since it had good agreement with experimental data. To reduce the computing time, due to symmetry of this nozzle, only one-sixth of this nozzle was modeled. Our present six-hole Diesel injector nozzle was modeled with different needle lifts including 30 μm, 100 μm and 250 μm. Effects of different needle lifts on mass flow rate, discharge coefficient and length of cavitation were evaluated comprehensively. Three different fuels including one Diesel fuel and two bio-Diesel fuels were also included in these numerical simulations. Behavior of these fuels was investigated for different needle lifts and pressure differences. For comparing the results, discharge coefficient, mass flow rate and length of cavitation region were compared under different boundary conditions and for several fuel types. The extreme temperature spike at the center of an imploding cavitation bubble was also analyzed as a function of time and initial bubble size. 
    more » « less
  5. Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness control and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper's performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers. 
    more » « less