skip to main content

Title: Resource competition and host feedbacks underlie regime shifts in gut microbiota
The spread of an enteric pathogen in the human gut depends on many interacting factors, including pathogen exposure, diet, host gut environment, and host microbiota, but how these factors jointly influence infection outcomes remains poorly characterized. Here, we develop a model of host-mediated resource-competition between mutualistic and pathogenic taxa in the gut that aims to explain why similar hosts, exposed to the same pathogen, can have such different infection outcomes. Our model successfully reproduces several empirically observed phenomena related to transitions between healthy and infected states, including (1) the nonlinear relationship between pathogen inoculum size and infection persistence, (2) the elevated risk of chronic infection during or after treatment with broad-spectrum antibiotics, (3) the resolution of gut dysbiosis with fecal microbiota transplants, and (4) the potential protection from infection conferred by probiotics. We then use the model to explore how host-mediated interventions, namely shifts in the supply rates of electron donors (e.g., dietary fiber) and respiratory electron acceptors (e.g., oxygen), can potentially be used to direct gut community assembly. Our study demonstrates how resource competition and ecological feedbacks between the host and the gut microbiota can be critical determinants of human health outcomes. We identify several testable model predictions ready more » for experimental validation. « less
; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
The American Naturalist
Sponsoring Org:
National Science Foundation
More Like this
  1. Klassen, Jonathan L. (Ed.)
    ABSTRACT Omnivorous animals, including humans, harbor diverse, species-rich gut communities that impact their growth, development, and homeostasis. Model invertebrates are broadly accessible experimental platforms that enable linking specific species or species groups to host phenotypes, yet often their specialized diets and distinct gut microbiota make them less comparable to human and other mammalian and gut communities. The omnivorous cockroach Periplaneta americana harbors ∼4 × 10 2 bacterial genera within its digestive tract and is enriched with taxa commonly found in omnivorous mammals (i.e., Proteobacteria, Bacteroidetes , and Firmicutes ). These features make P. americana a valuable platform for identifying microbe-mediated host phenotypes with potential translations to mammals. Rearing P. americana insects under germfree conditions resulted in prolonging development time by ∼30% and an up to ∼8% reduction in body size along three dimensions. Germfree rearing resulted in downregulation of gene networks involved in growth, energy homeostasis, and nutrient availability. Reintroduction of a defined microbiota comprised of a subset of P. americana commensals to germfree insects did not recover normal growth and developmental phenotypes or transcriptional profiles observed in conventionally reared insects. These results are in contrast with specialist-feeding model insects (e.g., Drosophila ), where introduction of a single endemic bacterial species tomore »germfree condition-reared specimens recovered normal host phenotypes. These data suggest that understanding microbe-mediated host outcomes in animals with species-rich communities should include models that typically maintain similarly diverse microbiomes. The dramatic transcriptional, developmental, and morphological phenotypes linked to gut microbiome status in this study illustrates how microbes are key players in animal growth and evolution. IMPORTANCE Broadly accessible model organisms are essential for illustrating how microbes are engaged in the growth, development, and evolution of animals. We report that germfree rearing of omnivorous Periplaneta americana cockroaches resulted in growth defects and severely disrupted gene networks that regulate development, which highlights the importance of gut microbiota in these host processes. Absence of gut microbiota elicited a starvation-like transcriptional response in which growth and development were inhibited while nutrient scavenging was enhanced. Additionally, reintroduction of a subset of cockroach gut bacterial commensals did not broadly recover normal expression patterns, illustrating that a particular microbiome composition may be necessary for normal host development. Invertebrate microbiota model systems that enable disentangling complex, species-rich communities are essential for linking microbial taxa to specific host phenotypes.« less
  2. Abstract

    The evolution of host immunity occurs in the context of the microbiome, but little theory exists to predict how resistance against pathogens might be influenced by the need to tolerate and regulate commensal microbiota. We present a general model to explore the optimal investment in host immunity under conditions in which the host can, versus cannot easily distinguish among commensal versus pathogenic bacteria, and when commensal microbiota can, versus cannot protect the host against the impacts of pathogen infection. We find that a loss of immune vigilance associated with innate immunity over evolutionary time can occur due to the challenge of discriminating between pathogenic and other microbe species. Further, we find the greater the protective effect of microbiome species, acting either directly or via competition with a pathogen, or the higher the costs of immunity, the more likely the loss of immune vigilance is. Conversely, this effect can be reversed when pathogens increase host mortality. Generally, the magnitude of costs of immunity required to allow evolution of decreased immune vigilance are predicted to be lowest when microbiome and pathogen species most resemble each other (in terms of host recognition), and when immune effects on the pathogen are weak. Ourmore »model framework makes explicit the core trade-offs likely to shape the evolution of immunity in the context of microbiome/pathogen discrimination. We discuss how this informs interpretation of patterns and process in natural systems, including vulnerability to pathogen emergence.

    « less
  3. Abstract Gut symbionts can augment resistance to pathogens by stimulating host-immune responses, competing for space and nutrients, or producing antimicrobial metabolites. Gut microbiota of social bees, which pollinate many crops and wildflowers, protect hosts against diverse infections and might counteract pathogen-related bee declines. Bumble bee gut microbiota, and specifically abundance of Lactobacillus ‘Firm-5’ bacteria, can enhance resistance to the trypanosomatid parasite Crithidia bombi . However, the mechanism underlying this effect remains unknown. We hypothesized that the Firm-5 bacterium Lactobacillus bombicola , which produces lactic acid, inhibits C. bombi via pH-mediated effects. Consistent with our hypothesis, L. bombicola spent medium inhibited C. bombi growth via reduction in pH that was both necessary and sufficient for inhibition. Inhibition of all parasite strains occurred within the pH range documented in honey bees, though sensitivity to acidity varied among strains. Spent medium was slightly more potent than HCl, d - and l -lactic acids for a given pH, suggesting that other metabolites also contribute to inhibition. Results implicate symbiont-mediated reduction in gut pH as a key determinant of trypanosomatid infection in bees. Future investigation into in vivo effects of gut microbiota on pH and infection intensity would test the relevance of these findings formore »bees threatened by trypanosomatids.« less
  4. Abstract

    Antibiotic treatment significantly impacts the human gut microbiota, but quantitative understanding of how antibiotics affect community diversity is lacking. Here, we build on classical ecological models of resource competition to investigate community responses to species-specific death rates, as induced by antibiotic activity or other growth-inhibiting factors such as bacteriophages. Our analyses highlight the complex dependence of species coexistence that can arise from the interplay of resource competition and antibiotic activity, independent of other biological mechanisms. In particular, we identify resource competition structures that cause richness to depend on the order of sequential application of antibiotics (non-transitivity), and the emergence of synergistic and antagonistic effects under simultaneous application of multiple antibiotics (non-additivity). These complex behaviors can be prevalent, especially when generalist consumers are targeted. Communities can be prone to either synergism or antagonism, but typically not both, and antagonism is more common. Furthermore, we identify a striking overlap in competition structures that lead to non-transitivity during antibiotic sequences and those that lead to non-additivity during antibiotic combination. In sum, our results establish a broadly applicable framework for predicting microbial community dynamics under deleterious perturbations.

  5. ABSTRACT Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs) to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi , a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola , a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli . Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conservedmore »architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo . Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota. IMPORTANCE The structure and composition of host-associated bacterial communities are of broad interest, because these communities affect host health. Bees have a simple, conserved gut microbiota, which provides an opportunity to explore interactions between species that have coevolved within their host over millions of years. This study examined the role of type VI secretion systems (T6SSs)—protein complexes used to deliver toxic proteins into bacterial competitors—within the bee gut microbiota. We identified two T6SSs and diverse T6SS-associated toxins in bacterial strains from bees. Expression of these genes is increased in bacteria in the bee gut, and toxin and immunity genes demonstrate antibacterial and protective functions, respectively, when expressed in Escherichia coli . Our results suggest that coevolution among bacterial species in the bee gut has favored toxin diversification and maintenance of T6SS machinery, and demonstrate the importance of antagonistic interactions within host-associated microbial communities.« less