skip to main content


Title: Semi-parametric Learning of Structured Temporal Point Processes
We propose a general framework of using a multi-level log-Gaussian Cox process to model repeatedly observed point processes with complex structures; such type of data has become increasingly available in various areas including medical research, social sciences, economics, and finance due to technological advances. A novel nonparametric approach is developed to efficiently and consistently estimate the covariance functions of the latent Gaussian processes at all levels. To predict the functional principal component scores, we propose a consistent estimation procedure by maximizing the conditional likelihood of super-positions of point processes. We further extend our procedure to the bivariate point process case in which potential correlations between the processes can be assessed. Asymptotic properties of the proposed estimators are investigated, and the effectiveness of our procedures is illustrated through a simulation study and an application to a stock trading dataset.  more » « less
Award ID(s):
2015190
NSF-PAR ID:
10225417
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of machine learning research
Volume:
21
ISSN:
1533-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a general framework of using a multi-level log-Gaussian Cox process to model repeatedly observed point processes with complex structures; such type of data have become increasingly available in various areas including medical research, social sciences, economics, and finance due to technological advances. A novel nonparametric approach is developed to efficiently and consistently estimate the covariance functions of the latent Gaussian processes at all levels. To predict the functional principal component scores, we propose a consistent estimation procedure by maximizing the conditional likelihood of super-positions of point processes. We further extend our procedure to the bivariate point process case in which potential correlations between the processes can be assessed. Asymptotic properties of the proposed estimators are investigated, and the effectiveness of our procedures is illustrated through a simulation study and an application to a stock trading dataset. 
    more » « less
  2. null (Ed.)
    The inference of Gaussian Processes concerns the distribution of the underlying function given observed data points. GP inference based on local ranges of data points is able to capture fine-scale correlations and allow fine-grained decomposition of the computation. Following this direction, we propose a new inference model that considers the correlations and observations of the K nearest neighbors for the inference at a data point. Compared with previous works, we also eliminate the data ordering prerequisite to simplify the inference process. Additionally, the inference task is decomposed to small subtasks with several technique innovations, making our model well suits the stochastic optimization. Since the decomposed small subtasks have the same structure, we further speed up the inference procedure with amortized inference. Our model runs efficiently and achieves good performances on several benchmark tasks. 
    more » « less
  3. Emerging wearable sensors have enabled the unprecedented ability to continuously monitor human activities for healthcare purposes. However, with so many ambient sensors collecting different measurements, it becomes important not only to maintain good monitoring accuracy, but also low power consumption to ensure sustainable monitoring. This power-efficient sensing scheme can be achieved by deciding which group of sensors to use at a given time, requiring an accurate characterization of the trade-off between sensor energy usage and the uncertainty in ignoring certain sensor signals while monitoring. To address this challenge in the context of activity monitoring, we have designed an adaptive activity monitoring framework. We first propose a switching Gaussian process to model the observed sensor signals emitting from the underlying activity states. To efficiently compute the Gaussian process model likelihood and quantify the context prediction uncertainty, we propose a block circulant embedding technique and use Fast Fourier Transforms (FFT) for inference. By computing the Bayesian loss function tailored to switching Gaussian processes, an adaptive monitoring procedure is developed to select features from available sensors that optimize the trade-off between sensor power consumption and the prediction performance quantified by state prediction entropy. We demonstrate the effectiveness of our framework on the popular benchmark of UCI Human Activity Recognition using Smartphones. 
    more » « less
  4. null (Ed.)
    Statistical emulators are a key tool for rapidly producing probabilistic hazard analysis of geophysical processes. Given output data computed for a relatively small number of parameter inputs, an emulator interpolates the data, providing the expected value of the output at untried inputs and an estimate of error at that point. In this work, we propose to fit Gaussian Process emulators to the output from a volcanic ash transport model, Ash3d. Our goal is to predict the simulated volcanic ash thickness from Ash3d at a location of interest using the emulator. Our approach is motivated by two challenges to fitting emulators—characterizing the input wind field and interactions between that wind field and variable grain sizes. We resolve these challenges by using physical knowledge on tephra dispersal. We propose new physically motivated variables as inputs and use normalized output as the response for fitting the emulator. Subsetting based on the initial conditions is also critical in our emulator construction. Simulation studies characterize the accuracy and efficiency of our emulator construction and also reveal its current limitations. Our work represents the first emulator construction for volcanic ash transport models with considerations of the simulated physical process. 
    more » « less
  5. Representation Learning over graph structured data has received significant attention recently due to its ubiquitous applicability. However, most advancements have been made in static graph settings while efforts for jointly learning dynamic of the graph and dynamic on the graph are still in an infant stage. Two fundamental questions arise in learning over dynamic graphs: (i) How to elegantly model dynamical processes over graphs? (ii) How to leverage such a model to effectively encode evolving graph information into low-dimensional representations? We present DyRep - a novel modeling framework for dynamic graphs that posits representation learning as a latent mediation process bridging two observed processes namely – dynamics of the network (realized as topological evolution) and dynamics on the network (realized as activities between nodes). Concretely, we propose a two-time scale deep temporal point process model that captures the interleaved dynamics of the observed processes. This model is further parameterized by a temporal-attentive representation network that encodes temporally evolving structural information into node representations which in turn drives the nonlinear evolution of the observed graph dynamics. Our unified framework is trained using an efficient unsupervised procedure and has capability to generalize over unseen nodes. We demonstrate that DyRep outperforms state-of-the-art baselines for dynamic link prediction and time prediction tasks and present extensive qualitative insights into our framework. 
    more » « less