skip to main content


Title: The spread of a finite group
A group G is said to be 3/2-generated if every nontrivial element belongs to a generating pair. It is easy to see that if G has this property, then every proper quotient of G is cyclic. In this paper we prove that the converse is true for finite groups, which settles a conjecture of Breuer, Guralnick and Kantor from 2008. In fact, we prove a much stronger result, which solves a problem posed by Brenner and Wiegold in 1975. Namely, if G is a finite group and every proper quotient of G is cyclic, then for any pair of nontrivial elements x1, x2 ϵ G, there exists y ϵ G such that G = ⟨x1, y⟩ = ⟨x2, y⟩. In other words, s(G) ⩾ 2, where s(G) is the spread of G. Moreover, if u(G) denotes the more restrictive uniform spread of G, then we can completely characterise the finite groups G with u(G) = 0 and u(G) = 1. To prove these results, we first establish a reduction to almost simple groups. For simple groups, the result was proved by Guralnick and Kantor in 2000 using probabilistic methods, and since then the almost simple groups have been the subject of several papers. By combining our reduction theorem and this earlier work, it remains to handle the groups with socle an exceptional group of Lie type, and this is the case we treat in this paper.  more » « less
Award ID(s):
1901595
NSF-PAR ID:
10225427
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annals of mathematics
Volume:
193
Issue:
2
ISSN:
0003-486X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this paper, we study elimination of imaginaries in henselian valued fields of equicharacteristic zero and residue field algebraically closed. The results are sensitive to the complexity of the value group. We focus first on the case where the ordered abelian group has finite spines, and then prove a better result for the dp‐minimal case. In previous work the author proved that an ordered abelian with finite spines weakly eliminates imaginaries once one adds sorts for the quotient groups for each definable convex subgroup , and sorts for the quotient groups where is a definable convex subgroup and . We refer to these sorts as thequotient sorts. Jahnke, Simon, and Walsberg (J. Symb. Log.82(2017) 151–165) characterized ‐minimal ordered abelian groups as those without singular primes, that is, for every prime number one has .

    We prove the following two theorems:

     

    more » « less
  2. Abstract

    The deep theory of approximate subgroups establishes three-step product growth for subsets of finite simple groups $G$ of Lie type of bounded rank. In this paper, we obtain two-step growth results for representations of such groups $G$ (including those of unbounded rank), where products of subsets are replaced by tensor products of representations. Let $G$ be a finite simple group of Lie type and $\chi $ a character of $G$. Let $|\chi |$ denote the sum of the squares of the degrees of all (distinct) irreducible characters of $G$ that are constituents of $\chi $. We show that for all $\delta>0$, there exists $\epsilon>0$, independent of $G$, such that if $\chi $ is an irreducible character of $G$ satisfying $|\chi | \le |G|^{1-\delta }$, then $|\chi ^2| \ge |\chi |^{1+\epsilon }$. We also obtain results for reducible characters and establish faster growth in the case where $|\chi | \le |G|^{\delta }$. In another direction, we explore covering phenomena, namely situations where every irreducible character of $G$ occurs as a constituent of certain products of characters. For example, we prove that if $|\chi _1| \cdots |\chi _m|$ is a high enough power of $|G|$, then every irreducible character of $G$ appears in $\chi _1\cdots \chi _m$. Finally, we obtain growth results for compact semisimple Lie groups.

     
    more » « less
  3. null (Ed.)
    Abstract We show that every finite group of order divisible by 2 or q , where q is a prime number, admits a $$\{2, q\}'$$ { 2 , q } ′ -degree nontrivial irreducible character with values in $${\mathbb{Q}}(e^{2 \pi i /q})$$ Q ( e 2 π i / q ) . We further characterize when such character can be chosen with only rational values in solvable groups. These results follow from more general considerations on groups admitting a $$\{p, q\}'$$ { p , q } ′ -degree nontrivial irreducible character with values in $${\mathbb{Q}}(e^{2 \pi i /p})$$ Q ( e 2 π i / p ) or $${\mathbb{Q}}(e^{ 2 \pi i/q})$$ Q ( e 2 π i / q ) , for any pair of primes p and q . Along the way, we completely describe simple alternating groups admitting a $$\{p, q\}'$$ { p , q } ′ -degree nontrivial irreducible character with rational values. 
    more » « less
  4. For finitely generated groups G and H equipped with word metrics, a translation-like action of H on G is a free action where each element of H moves elements of G a bounded distance. Translation-like actions provide a geometric generalization of subgroup containment. Extending work of Cohen, we show that cocompact lattices in a general semisimple Lie group G that is not isogenous to SL(2,ℝ) admit translation-like actions by ℤ2. This result follows from a more general result. Namely, we prove that any cocompact lattice in the unipotent radical N of the Borel subgroup AN of G acts translation-like on any cocompact lattice in G. We also prove that for noncompact simple Lie groups G,H with H more » « less
  5. We develop a theory of linear isoperimetric inequalities for graphs on surfaces and apply it to coloring problems, as follows. Let $ G$ be a graph embedded in a fixed surface $ \Sigma $ of genus $ g$ and let $ L=(L(v):v\in V(G))$ be a collection of lists such that either each list has size at least five, or each list has size at least four and $ G$ is triangle-free, or each list has size at least three and $ G$ has no cycle of length four or less. An $ L$-coloring of $ G$ is a mapping $ \phi $ with domain $ V(G)$ such that $ \phi (v)\in L(v)$ for every $ v\in V(G)$ and $ \phi (v)\ne \phi (u)$ for every pair of adjacent vertices $ u,v\in V(G)$. We prove if every non-null-homotopic cycle in $ G$ has length $ \Omega (\log g)$, then $ G$ has an $ L$-coloring, if $ G$ does not have an $ L$-coloring, but every proper subgraph does (``$ L$-critical graph''), then $ \vert V(G)\vert=O(g)$, if every non-null-homotopic cycle in $ G$ has length $ \Omega (g)$, and a set $ X\subseteq V(G)$ of vertices that are pairwise at distance $ \Omega (1)$ is precolored from the corresponding lists, then the precoloring extends to an $ L$-coloring of $ G$, if every non-null-homotopic cycle in $ G$ has length $ \Omega (g)$, and the graph $ G$ is allowed to have crossings, but every two crossings are at distance $ \Omega (1)$, then $ G$ has an $ L$-coloring, if $ G$ has at least one $ L$-coloring, then it has at least $ 2^{\Omega (\vert V(G)\vert)}$ distinct $ L$-colorings. We show that the above assertions are consequences of certain isoperimetric inequalities satisfied by $ L$-critical graphs, and we study the structure of families of embedded graphs that satisfy those inequalities. It follows that the above assertions hold for other coloring problems, as long as the corresponding critical graphs satisfy the same inequalities. 
    more » « less