- Award ID(s):
- 1715579
- NSF-PAR ID:
- 10225452
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 496
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 3636 to 3647
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate ($M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds.more » « less
-
ABSTRACT We study the properties of the Sydney University Molonglo Sky Survey (SUMSS) 843 MHz radio active galactic nuclei (AGNs) population in galaxy clusters from two large catalogues created using the Dark Energy Survey (DES): ∼11 800 optically selected RM-Y3 and ∼1000 X-ray selected MARD-Y3 clusters. We show that cluster radio loud AGNs are highly concentrated around cluster centres to $z$ ∼ 1. We measure the halo occupation number for cluster radio AGNs above a threshold luminosity, finding that the number of radio AGNs per cluster increases with cluster halo mass as N ∝ M1.2 ± 0.1 (N ∝ M0.68 ± 0.34) for the RM-Y3 (MARD-Y3) sample. Together, these results indicate that radio mode feedback is favoured in more massive galaxy clusters. Using optical counterparts for these sources, we demonstrate weak redshift evolution in the host broad-band colours and the radio luminosity at fixed host galaxy stellar mass. We use the redshift evolution in radio luminosity to break the degeneracy between density and luminosity evolution scenarios in the redshift trend of the radio AGNs luminosity function (LF). The LF exhibits a redshift trend of the form (1 + $z$)γ in density and luminosity, respectively, of γD = 3.0 ± 0.4 and γP = 0.21 ± 0.15 in the RM-Y3 sample, and γD = 2.6 ± 0.7 and γP = 0.31 ± 0.15 in MARD-Y3. We discuss the physical drivers of radio mode feedback in cluster AGNs, and we use the cluster radio galaxy LF to estimate the average radio-mode feedback energy as a function of cluster mass and redshift and compare it to the core (<0.1R500) X-ray radiative losses for clusters at $z$ < 1.more » « less
-
Abstract We present the discovery of a luminous X-ray active galactic nucleus (AGN) in the dwarf galaxy merger RGG 66. The black hole is predicted to have a mass of
M BH∼ 105.4M ⊙and to be radiating close to its Eddington limit (L bol/L Edd∼ 0.75). The AGN in RGG 66 is notable both for its presence in a late-stage dwarf–dwarf merger and for its luminosity ofL 2–10 keV= 1042.2erg s−1, which is among the most powerful AGNs known in nearby dwarf galaxies. The X-ray spectrum has a best-fit photon index of Γ = 2.4 and an intrinsic absorption ofN H ∼ 1021cm−2. These results come from a follow-up Chandra X-ray Observatory study of four irregular/disturbed dwarf galaxies with evidence for hosting AGNs based on optical spectroscopy. The remaining three dwarf galaxies do not have detectable X-ray sources with upper limits ofL 2–10 keV≲ 1040erg s−1. Taken at face value, our results on RGG 66 suggest that mergers may trigger the most luminous of AGNs in the dwarf galaxy regime, just as they are suspected to do in more massive galaxy mergers. -
null (Ed.)ABSTRACT We report on continued, ∼15-yr long, broad Balmer emission lines in three metal-poor dwarf emission-line galaxies selected from Sloan Digital Sky Survey spectroscopy. The persistent luminosity of the broad Balmer emission indicates the galaxies are active galactic nuclei (AGNs) with virial black hole masses of ∼106.7–107.0 M⊙. The lack of observed hard X-ray emission and the possibility that the Balmer emission could be due to a long-lived stellar transient motivated additional follow-up spectroscopy. We also identify a previously unreported blueshifted narrow absorption line in the broad H α feature in one of the AGNs, indicating an AGN-driven outflow with hydrogen column densities of order 1017 cm−2. We also extract light curves from the Catalina Real-Time Transient Survey and the Zwicky Transient Facility. We detect probable AGN-like variability in three galaxies, further supporting the AGN scenario. This also suggests the AGNs are not strongly obscured. This sample of galaxies are among the most metal-poor that host an AGN (Z = 0.05–0.16 Z⊙). We speculate they may be analogues to seed black holes which formed in unevolved galaxies at high redshift. Given the rarity of metal-poor AGNs and small sample size available, we investigate prospects for their identification in future spectroscopic and photometric surveys.more » « less
-
Which galaxies in the general population turn into active galactic nuclei (AGNs) is a keystone of galaxy formation and evolution. Thanks to SRG/eROSITA’s contiguous 140 square degree pilot survey field, we constructed a large, complete, and unbiased soft X-ray flux-limited ( F X > 6.5 × 10 −15 erg s −1 cm −2 ) AGN sample at low redshift, 0.05 < z < 0.55. Two summary statistics, the clustering using spectra from SDSS-V and galaxy-galaxy lensing with imaging from HSC, are measured and interpreted with halo occupation distribution and abundance matching models. Both models successfully account for the observations. We obtain an exceptionally complete view of the AGN halo occupation distribution. The population of AGNs is broadly distributed among halos with a mean mass of 3.9 −2.4 +2.0 × 10 12 M ⊙ . This corresponds to a large-scale halo bias of b ( z = 0.34) = 0.99 −0.10 +0.08 . The central occupation has a large transition parameter, σ log 10 ( M ) = 1.28 ± 0.2. The satellite occupation distribution is characterized by a shallow slope, α sat = 0.73 ± 0.38. We find that AGNs in satellites are rare, with f sat < 20%. Most soft X-ray-selected AGNs are hosted by central galaxies in their dark matter halo. A weak correlation between soft X-ray luminosity and large-scale halo bias is confirmed (3.3 σ ). We discuss the implications of environmental-dependent AGN triggering. This study paves the way toward fully charting, in the coming decade, the coevolution of X-ray AGNs, their host galaxies, and dark matter halos by combining eROSITA with SDSS-V, 4MOST, DESI, LSST, and Euclid data.more » « less