skip to main content


Title: Dwarf AGNs from Optical Variability for the Origins of Seeds (DAVOS): insights from the dark energy survey deep fields
ABSTRACT We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 d, a 6-yr baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate ($M_{\ast }\lt 10^{9.5}\, {\rm M}_\odot$; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability time-scales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole (BH) masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalogue, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower BH masses in deep fields, which may be more ‘pristine’ analogues of supermassive BH seeds.  more » « less
Award ID(s):
2108162
NSF-PAR ID:
10425074
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
2736 to 2756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT We report the identification of a low-mass active galactic nucleus (AGN), DES J0218−0430, in a redshift z = 0.823 galaxy in the Dark Energy Survey (DES) Supernova field. We select DES J0218−0430 as an AGN candidate by characterizing its long-term optical variability alone based on DES optical broad-band light curves spanning over 6 yr. An archival optical spectrum from the fourth phase of the Sloan Digital Sky Survey shows both broad Mg ii and broad H β lines, confirming its nature as a broad-line AGN. Archival XMM–Newton X-ray observations suggest an intrinsic hard X-ray luminosity of $L_{{\rm 2-12\, keV}}\approx 7.6\pm 0.4\times 10^{43}$ erg s−1, which exceeds those of the most X-ray luminous starburst galaxies, in support of an AGN driving the optical variability. Based on the broad H β from SDSS spectrum, we estimate a virial black hole (BH) mass of M• ≈ 106.43–106.72 M⊙ (with the error denoting the systematic uncertainty from different calibrations), consistent with the estimation from OzDES, making it the lowest mass AGN with redshift > 0.4 detected in optical. We estimate the host galaxy stellar mass to be M* ≈ 1010.5 ± 0.3 M⊙ based on modelling the multiwavelength spectral energy distribution. DES J0218−0430 extends the M•–M* relation observed in luminous AGNs at z ∼ 1 to masses lower than being probed by previous work. Our work demonstrates the feasibility of using optical variability to identify low-mass AGNs at higher redshift in deeper synoptic surveys with direct implications for the upcoming Legacy Survey of Space and Time at Vera C. Rubin Observatory. 
    more » « less
  2. ABSTRACT

    We present a phenomenological forward Monte Carlo model for forecasting the population of active galactic nuclei (AGNs) in dwarf galaxies observable via their optical variability. Our model accounts for expected changes in the spectral energy distribution of AGNs in the intermediate-mass black hole (IMBH) mass range and uses observational constraints on optical variability as a function of black hole (BH) mass to generate mock light curves. Adopting several different models for the BH occupation function, including one for off-nuclear IMBHs, we quantify differences in the predicted local AGN mass and luminosity functions in dwarf galaxies. As a result, we are able to model the fraction of variable AGNs as a function of important galaxy host properties, such as host galaxy stellar mass, in the presence of selection effects. We find that our adopted occupation fractions for the ‘heavy’ and ‘light’ initial BH seeding scenarios can be distinguished with variability at the 2–3σ level for galaxy host stellar masses below ∼108M⊙ with data from the upcoming Vera C. Rubin Observatory. We also demonstrate the prevalence of a selection bias whereby recovered IMBH masses fall, on average, above the predicted value from the local host galaxy–BH mass scaling relation with the strength of this bias dependent on the survey sensitivity. Our methodology can be used more broadly to calibrate AGN demographic studies in synoptic surveys. Finally, we show that a targeted ∼ hourly cadence program over a few nights with the Rubin Observatory can provide strong constraints on IMBH masses given their expected rapid variability time-scales.

     
    more » « less
  3. Abstract While it is difficult to observe the first black hole seeds in the early universe, we can study intermediate-mass black holes (IMBHs) in local dwarf galaxies for clues about their origins. In this paper we present a sample of variability-selected active galactic nuclei (AGN) in dwarf galaxies using optical photometry from the Zwicky Transient Facility (ZTF) and forward-modeled mid-IR photometry of time-resolved Wide-field Infrared Survey Explorer (WISE) co-added images. We found that 44 out of 25,714 dwarf galaxies had optically variable AGN candidates and 148 out of 79,879 dwarf galaxies had mid-IR variable AGN candidates, corresponding to active fractions of 0.17% ± 0.03% and 0.19% ± 0.02%, respectively. We found that spectroscopic approaches to AGN identification would have missed 81% of our ZTF IMBH candidates and 69% of our WISE IMBH candidates. Only nine candidates have been detected previously in radio, X-ray, and variability searches for dwarf galaxy AGN. The ZTF and WISE dwarf galaxy AGN with broad Balmer lines have virial masses of 10 5 M ⊙ < M BH < 10 7 M ⊙ , but for the rest of the sample, BH masses predicted from host galaxy mass range between 10 5.2 M ⊙ < M BH < 10 7.25 M ⊙ . We found that only 5 of 152 previously reported variability-selected AGN candidates from the Palomar Transient Factory in common with our parent sample were variable in ZTF. We also determined a nuclear supernova fraction of 0.05% ± 0.01% yr −1 for dwarf galaxies in ZTF. Our ZTF and WISE IMBH candidates show the promise of variability searches for the discovery of otherwise hidden low-mass AGN. 
    more » « less
  4. null (Ed.)
    ABSTRACT We report on continued, ∼15-yr long, broad Balmer emission lines in three metal-poor dwarf emission-line galaxies selected from Sloan Digital Sky Survey spectroscopy. The persistent luminosity of the broad Balmer emission indicates the galaxies are active galactic nuclei (AGNs) with virial black hole masses of ∼106.7–107.0 M⊙. The lack of observed hard X-ray emission and the possibility that the Balmer emission could be due to a long-lived stellar transient motivated additional follow-up spectroscopy. We also identify a previously unreported blueshifted narrow absorption line in the broad H α feature in one of the AGNs, indicating an AGN-driven outflow with hydrogen column densities of order 1017 cm−2. We also extract light curves from the Catalina Real-Time Transient Survey and the Zwicky Transient Facility. We detect probable AGN-like variability in three galaxies, further supporting the AGN scenario. This also suggests the AGNs are not strongly obscured. This sample of galaxies are among the most metal-poor that host an AGN (Z = 0.05–0.16 Z⊙). We speculate they may be analogues to seed black holes which formed in unevolved galaxies at high redshift. Given the rarity of metal-poor AGNs and small sample size available, we investigate prospects for their identification in future spectroscopic and photometric surveys. 
    more » « less
  5. ABSTRACT

    We measure the optical variability in ∼16 500 low-redshift (z ∼ 0.1) galaxies to map the relations between active galactic nucleus (AGN) activity and galaxy stellar mass, specific star formation rate, half-light radius, and bulge-to-total ratio. To do this, we use a reduced χ2 variability measure on >10 epoch light curves from the Zwicky Transient Facility and combine with spectroscopic data and derive galaxy parameters from the Sloan Digital Sky Survey. We find that below the stellar mass of 1011 M⊙, galaxies classed as star-forming via the Baldwin–Phillips–Terlevich diagram have higher mean variabilities than AGN or composite galaxies. Revealingly, the highest mean variabilities occur in star-forming galaxies in a narrow range of specific star formation rate: −11 < log(sSFR/yr−1) < −10. In very actively star-forming galaxies [log(sSFR/yr−1) > −10], the reduced variability implies a lack of instantaneous correlation with star formation rate. Our results may indicate that a high level of variability, and thus black hole growth, acts as a precursor for reduced star formation, bulge growth, and revealed AGN-like emission lines. These results add to the mounting evidence that optical variability can act as a viable tracer for low-mass AGNs and that such AGNs can strongly affect their host galaxy.

     
    more » « less