skip to main content

Title: WISDOM Project – XIII. Feeding molecular gas to the supermassive black hole in the starburst AGN-host galaxy Fairall 49

The mm-Wave Interferometric Survey of Dark Object Masses (WISDOM) is probing supermassive black holes (SMBHs) in galaxies across the Hubble sequence via molecular gas dynamics. We present the first WISDOM study of a luminous infrared galaxy with an active galactic nuclei (AGNs): Fairall 49. We use new ALMA observations of the CO(2 − 1) line with a spatial resolution of ∼80 pc together with ancillary HST imaging. We reach the following results: (1) The CO kinematics are well described by a regularly rotating gas disc with a radial inflow motion, suggesting weak feedback on the cold gas from both AGN and starburst activity; (2) The dynamically inferred SMBH mass is 1.6 ± 0.4(rnd) ± 0.8(sys) × 108 M⊙ assuming that we have accurately subtracted the AGN and starburst light contributions, which have a luminosity of ∼109 L⊙; (3) The SMBH mass agrees with the SMBH−stellar mass relation but is ∼50 times higher than previous estimates from X-ray variability; (4) The dynamically inferred molecular gas mass is 30 times smaller than that inferred from adopting the Galactic CO-to-H2 conversion factor (XCO) for thermalized gas, suggesting low values of XCO; (5) the molecular gas inflow rate increases steadily with radius and may be as high as ∼5 M⊙ yr−1. This work highlights the more » potential of using high-resolution CO data to estimate, in addition to SMBH masses, the XCO factor, and gas inflow rates in nearby galaxies.

« less
; ; ; ; ; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 4066-4083
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dual active galactic nuclei (AGNs), which are the manifestation of two actively accreting supermassive black holes (SMBHs) hosted by a pair of merging galaxies, are a unique laboratory for studying the physics of SMBH feeding and feedback during an indispensable stage of galaxy evolution. In this work, we present NOEMA CO(2–1) observations of seven kiloparsec-scale dual-AGN candidates drawn from a recent Chandra survey of low redshift, optically classified AGN pairs. These systems are selected because they show unexpectedly low 2–10 keV X-ray luminosities for their small physical separations signifying an intermediate-to-late stage of merger. Circumnuclear molecular gas traced by the CO(2–1) emission is significantly detected in six of the seven pairs and 10 of the 14 nuclei, with an estimated mass ranging between (0.2–21) × 109M. The primary nuclei, i.e., the ones with the higher stellar velocity dispersion, tend to have a higher molecular gas mass than the secondary. Most CO-detected nuclei show a compact morphology, with a velocity field consistent with a kiloparsec-scale rotating structure. The inferred hydrogen column densities range between 5 × 1021–2 × 1023cm−2, but mostly at a few times 1022cm−2, in broad agreement with those derived from X-ray spectral analysis. Together with the relativelymore »weak mid-infrared emission, the moderate column density argues against the prevalence of heavily obscured, intrinsically luminous AGNs in these seven systems, but favors a feedback scenario in which AGN activity triggered by a recent pericentric passage of the galaxy pair can expel circumnuclear gas and suppress further SMBH accretion.

    « less

    As part of the mm-Wave Interferometric Survey of Dark Object Masses (WISDOM), we present a measurement of the mass of the supermassive black hole (SMBH) in the nearby early-type galaxy NGC 0383 (radio source 3C 031). This measurement is based on Atacama Large Millimeter/sub-millimeter Array (ALMA) cycle 4 and 5 observations of the 12CO(2–1) emission line with a spatial resolution of 58 × 32 pc2 (0.18 arcsec × 0.1 arcsec). This resolution, combined with a channel width of 10 km s−1, allows us to well resolve the radius of the black hole sphere of influence (measured as RSOI = 316 pc  =  0.98 arcsec), where we detect a clear Keplerian increase of the rotation velocities. NGC 0383 has a kinematically relaxed, smooth nuclear molecular gas disc with weak ring/spiral features. We forward model the ALMA data cube with the Kinematic Molecular Simulation (KinMS) tool and a Bayesian Markov Chain Monte Carlo method to measure an SMBH mass of (4.2 ± 0.7) × 109 M⊙, a F160W-band stellar mass-to-light ratio that varies from 2.8 ± 0.6 M⊙/L$_{\odot ,\, \mathrm{F160W}}$ in the centre to 2.4 ± 0.3 M⊙$/\rm L_{\odot ,\, \mathrm{F160W}}$ at the outer edge of the disc and a molecular gas velocity dispersion of 8.3 ± 2.1 km s−1(all 3σ uncertainties). We also detect unresolved continuum emission across the full bandwidth, consistent with synchrotron emission from an active galactic nucleus. Thismore »work demonstrates that low-J CO emission can resolve gas very close to the SMBH ($\approx 140\, 000$ Schwarzschild radii) and hence that the molecular gas method is highly complimentary to megamaser observations, as it can probe the same emitting material.

    « less
  3. Abstract

    Active galactic nucleus (AGN) feedback is postulated as a key mechanism for regulating star formation within galaxies. Studying the physical properties of the outflowing gas from AGNs is thus crucial for understanding the coevolution of galaxies and supermassive black holes. Here we report 55 pc resolution ALMA neutral atomic carbon [Ci]3P13P0observations toward the central 1 kpc of the nearby Type 2 Seyfert galaxy NGC 1068, supplemented by 55 pc resolution CO(J= 1−0) observations. We find that [Ci] emission within the central kiloparsec is strongly enhanced by a factor of >5 compared to the typical [Ci]/CO intensity ratio of ∼0.2 for nearby starburst galaxies (in units of brightness temperature). The most [Ci]-enhanced gas (ratio > 1) exhibits a kiloparsec-scale elongated structure centered at the AGN that matches the known biconical ionized gas outflow entraining molecular gas in the disk. A truncated, decelerating bicone model explains well the kinematics of the elongated structure, indicating that the [Ci] enhancement is predominantly driven by the interaction between the ISM in the disk and the highly inclined ionized gas outflow (which is likely driven by the radio jet). Our results strongly favor the “CO dissociation scenario” rather than the “in situ C formation” one,more »which prefers a perfect bicone geometry. We suggest that the high-[Ci]/CO intensity ratio gas in NGC 1068 directly traces ISM in the disk that is currently dissociated and entrained by the jet and the outflow, i.e., the “negative” effect of the AGN feedback.

    « less
  4. The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13 CO (2–1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude–velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~10 5 –10 6 M ⊙ kpc −1 . This is similar to values inferred from data sets in which emission distributionsmore »were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one.« less
  5. Abstract We present a high-resolution study of the cold molecular gas as traced by CO(1-0) in the unlensed z ∼ 3.4 submillimeter galaxy SMM J13120+4242, using multiconfiguration observations with the Karl G. Jansky Very Large Array (JVLA). The gas reservoir, imaged on 0.″39 (∼3 kpc) scales, is resolved into two components separated by ∼11 kpc with a total extent of 16 ± 3 kpc. Despite the large spatial extent of the reservoir, the observations show a CO(1-0) FWHM linewidth of only 267 ± 64 km s −1 . We derive a revised line luminosity of L CO ( 1 − 0 ) ′ = (10 ± 3) × 10 10 K km s −1 pc 2 and a molecular gas mass of M gas = (13 ± 3)× 10 10 ( α CO /1) M ⊙ . Despite the presence of a velocity gradient (consistent with previous resolved CO(6-5) imaging), the CO(1-0) imaging shows evidence for significant turbulent motions that are preventing the gas from fully settling into a disk. The system likely represents a merger in an advanced stage. Although the dynamical mass is highly uncertain, we use it to place an upper limit on the CO-to-H 2 massmore »conversion factor α CO of 1.4. We revisit the SED fitting, finding that this galaxy lies on the very massive end of the main sequence at z = 3.4. Based on the low gas fraction, short gas depletion time, and evidence for a central AGN, we propose that SMM J13120 is in a rapid transitional phase between a merger-driven starburst and an unobscured quasar. The case of SMM J13120 highlights how mergers may drive important physical changes in galaxies without pushing them off the main sequence.« less