In this paper we investigate the feasibility of denialof-service (DoS) attacks on shared caches in multicore platforms. With carefully engineered attacker tasks, we are able to cause more than 300X execution time increases on a victim task running on a dedicated core on a popular embedded multicore platform, regardless of whether we partition its shared cache or not. Based on careful experimentation on real and simulated multicore platforms, we identify an internal hardware structure of a nonblocking cache, namely the cache writeback buffer, as a potential target of shared cache DoS attacks. We propose an OS-level solution to prevent such DoS attacks by extending a state-of-the-art memory bandwidth regulation mechanism. We implement the proposed mechanism in Linux on a real multicore platform and show its effectiveness in protecting against cache DoS attacks.
more »
« less
Stream Floating: Enabling Proactive and Decentralized Cache Optimizations
As multicore systems continue to grow in scale and on-chip memory capacity, the on-chip network bandwidth and latency become problematic bottlenecks. Because of this, overheads in data transfer, the coherence protocol and replacement policies become increasingly important. Unfortunately, even in well-structured programs, many natural optimizations are difficult to implement because of the reactive and centralized nature of traditional cache hierarchies, where all requests are initiated by the core for short, cache line granularity accesses. For example, long-lasting access patterns could be streamed from shared caches without requests from the core. Indirect memory access can be performed by chaining requests made from within the cache, rather than constantly returning to the core. Our primary insight is that if programs can embed information about long-term memory stream behavior in their ISAs, then these streams can be floated to the appropriate level of the memory hierarchy. This decentralized approach to address generation and cache requests can lead to better cache policies and lower request and data traffic by proactively sending data before the cores even request it. To evaluate the opportunities of stream floating, we enhance a tiled multicore cache hierarchy with stream engines to process stream requests in last-level cache banks. We develop several novel optimizations that are facilitated by stream exposure in the ISA, and subsequent exposure to caches. We evaluate using a cycle-level execution-driven gem5-based simulator, using 10 data-processing workloads from Rodinia and 2 streaming kernels written in OpenMP. We find that stream floating enables 52% and 39% speedup over an inorder and OOO core with state of art prefetcher design respectively, with 64% and 49% energy efficiency advantage.
more »
« less
- PAR ID:
- 10225460
- Date Published:
- Journal Name:
- 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
- Page Range / eLocation ID:
- 640 to 653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The gem5 simulator offers Classic and Ruby as two separate memory models for simulating on-chip caches. The Classic model, which originated from M5, is a quick and simple option that allows for easy configuration, but only supports a basic MOESI coherence protocol. On the other hand, the Ruby model, which was developed by GEMS [2], is a more advanced and flexible option that can accurately simulate a wider range of cache coherence protocols and features. However, choosing between the two memory system models in gem5 is challenging for researchers as each has advantages and limitations which can be inconvenient. In particular, this has led to a bifurcation of effort where prior work has added replacement policies to Classic and Ruby in parallel – duplicating effort unnecessarily and preventing users from using a desired replacement policy if it is not implemented in the desired memory model (e.g., users could only use RRIP in Classic). Accordingly, we merged the cache replacement policies from Classic to Ruby, enabling users to use any of the replacement policies in either memory model. Gem5 currently has the capability to support 13 replacement policies, which can be used exchangeable within the Classic and Ruby cache models, including commonly used options like LRU, FIFO, PseudoLRU, and different types of RRIPs. After combining the replacement policies for the Classic and Ruby cache models, we designed and integrated (into gem5’s nightly regressions) multiple corner case tests to verify and ensure the continued correct functionality of these policies. Through these tests, we identified and fixed several bugs to ensure that the replacement policies operate correctly. Finally, with the newly enabled and verified functionality, since there is limited information about how different replacement policies affects GPU performance, we decided to use gem5 to study these policies in a GPU context. Specifically, we study GPU L2 caches, since GPU L1 caches are often used to stream data through and thus are unlikely to be significantly impacted by replacement policy.more » « less
-
The gem5 simulator offers Classic and Ruby as two separate memory models for simulating on-chip caches. The Classic model, which originated from M5, is a quick and simple option that allows for easy configuration, but only supports a basic MOESI coherence protocol. On the other hand, the Ruby model, which was developed by GEMS [2], is a more advanced and flexible option that can accurately simulate a wider range of cache coherence protocols and features. However, choosing between the two memory system models in gem5 is challenging for researchers as each has advantages and limitations which can be inconvenient. In particular, this has led to a bifurcation of effort where prior work has added replacement policies to Classic and Ruby in parallel – duplicating effort unnecessarily and preventing users from using a desired replacement policy if it is not implemented in the desired memory model (e.g., users could only use RRIP in Classic). Accordingly, we merged the cache replacement policies from Classic to Ruby, enabling users to use any of the replacement policies in either memory model. Gem5 currently has the capability to support 13 replacement policies, which can be used exchangeable within the Classic and Ruby cache models, including commonly used options like LRU, FIFO, PseudoLRU, and different types of RRIPs. After combining the replacement policies for the Classic and Ruby cache models, we designed and integrated (into gem5’s nightly regressions) multiple corner case tests to verify and ensure the continued correct functionality of these policies. Through these tests, we identified and fixed several bugs to ensure that the replacement policies operate correctly. Finally, with the newly enabled and verified functionality, since there is limited information about how different replacement policies affects GPU performance, we decided to use gem5 to study these policies in a GPU context. Specifically, we study GPU L2 caches, since GPU L1 caches are often used to stream data through and thus are unlikely to be significantly impacted by replacement policy.more » « less
-
Because of severe limitations in technology scaling, architects have innovated in specializing general purpose processors for computation primitives (e.g. vector instructions, loop accelerators). The general principle is exposing rich semantics to the ISA. An opportunity to explore is whether richer semantics of memory access patterns could also be used to improve the efficiency of memory and communication. Two important open questions are how to convey higher level memory information and how to take advantage of this information in hardware. We find that a majority of memory accesses follow a small number of simple patterns; we term these streams (e.g. affine, indirect). Streams can often be decoupled from core execution, and patterns persist long enough to express useful behavior. Our approach is therefore to express streams as ISA primitives, which we argue can enable: prefetch stream accesses to hide memory latency, semi-binding decoupled access to remove address computation and optimize the memory interface, and finally inform cache policies. In this work, we propose ISA-extensions for decoupled-streams, which interact with the core using a FIFO-based interface. We implement optimizations for each of the aforementioned opportunities on an aggressive wide-issue OOO core and evaluate with SPEC CPU 2017 and CortexSuite[1, 2]. Across all workloads, we observe about 1.37× speedup and energy efficiency improvement over hardware stride prefetching.more » « less
-
A modern Graphics Processing Unit (GPU) utilizes L1 Data (L1D) caches to reduce memory bandwidth requirements and latencies. However, the L1D cache can easily be overwhelmed by many memory requests from GPU function units, which can bottleneck GPU performance. It has been shown that the performance of L1D caches is greatly reduced for many GPU applications as a large amount of L1D cache lines are replaced before they are re-referenced. By examining the cache access patterns of these applications, we observe L1D caches with low associativity have difficulty capturing data locality for GPU applications with diverse reuse patterns. These patterns result in frequent line replacements and low data re-usage. To improve the efficiency of L1D caches, we design a Dynamic Line Protection scheme (DLP) that can both preserve valuable cache lines and increase cache line utilization. DLP collects data reuse information from the L1D cache. This information is used to predict protection distances for each memory instruction at runtime, which helps maintain a balance between exploitation of data locality and over-protection of cache lines with long reuse distances. When all cache lines are protected in a set, redundant cache misses are bypassed to reduce the contention for the set. The evaluation result shows that our proposed solution improves cache hits while reducing cache traffic for cache-insufficient applications, achieving up to 137% and an average of 43% IPC improvement over the baseline.more » « less
An official website of the United States government

