skip to main content


Title: Understanding People’s Attitude and Concerns towards Adopting IoT Devices
The proliferation of the Internet of Things (IoT) has started transforming our lifestyle through automation of home appliances. However, there are users who are hesitant to adopt IoT devices due to various privacy and security concerns. In this paper, we elicit peoples’ attitude and concerns towards adopting IoT devices. We conduct an online survey and collect responses from 232 participants from three different geographic regions (United States, Europe, and India); the participants consist of both adopters and non-adopters of IoT devices. Through data analysis, we determine that there are both similarities and differences in perceptions and concerns between adopters and non-adopters. For example, even though IoT and non-IoT users share similar security and privacy concerns, IoT users are more comfortable using IoT devices in private settings compared to non-IoT users. Furthermore, when comparing users’ attitude and concerns across different geographic regions, we found similarities between participants from the US and Europe, yet participants from India showcased contrasting behavior. For instance, we found that participants from India were more trusting in their government to properly protect consumer data and were more comfortable using IoT devices in a variety of public settings, compared to participants from the US and Europe. Based on our findings, we provide recommendations to reduce users’ concerns in adopting IoT devices, and thereby enhance user trust towards adopting IoT devices.  more » « less
Award ID(s):
1849997
NSF-PAR ID:
10225531
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
CHI Conference on Human Factors in Computing Systems CHI Conference on Human Factors in Computing Systems Extended Abstracts
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In prior work, researchers proposed an Internet of Things (IoT) security and privacy label akin to a food nutrition label, based on input from experts. We conducted a survey with 1,371 Mechanical Turk (MTurk) participants to test the effectiveness of each of the privacy and security attribute-value pairs proposed in that prior work along two key dimensions: ability to convey risk to consumers and impact on their willingness to purchase an IoT device. We found that the values intended to communicate increased risk were generally perceived that way by participants. For example, we found that consumers perceived more risk when a label conveyed that data would be sold to third parties than when it would not be sold at all, and that consumers were more willing to purchase devices when they knew that their data would not be retained or shared with others. However, participants’ risk perception did not always align with their willingness to purchase, sometimes due to usability concerns. Based on our findings, we propose actionable recommendations on how to more effectively present privacy and security attributes on an IoT label to better communicate risk to consumers 
    more » « less
  2. This paper investigates how trust towards service providers and the adoption of privacy controls belonging to two specific purposes (control over “sharing” vs. “usage” of data) vary based on users’ technical literacy. Towards that, we chose Google as the context and conducted an online survey across 209 Google users. Our results suggest that integrity and benevolence perceptions toward Google are significantly lower among technical participants than non-technical participants. While trust perceptions differ between non-technical adopters and non-adopters of privacy controls, no such difference is found among the technical counterparts. Notably, among the non-technical participants, the direction of trust affecting privacy control adoption is observed to be reversed based on the purpose of the controls. Using qualitative analysis, we extract trust-enhancing and dampening factors contributing to users’ trusting beliefs towards Google’s protection of user privacy. The implications of our findings for the design and promotion of privacy controls are discussed in the paper. 
    more » « less
  3. mmWave signals form a critical component of 5G and next-generation wireless networks, which are also being increasingly considered for sensing the environment around us to enable ubiquitous IoT applications. In this context, this paper leverages the properties of mmWave signals for tracking 3D finger motion for interactive IoT applications. While conventional vision-based solutions break down under poor lighting, occlusions, and also suffer from privacy concerns, mmWave signals work under typical occlusions and non-line-of-sight conditions, while being privacy-preserving. In contrast to prior works on mmWave sensing that focus on predefined gesture classification, this work performs continuous 3D finger motion tracking. Towards this end, we first observe via simulations and experiments that the small size of fingers coupled with specular reflections do not yield stable mmWave reflections. However, we make an interesting observation that focusing on the forearm instead of the fingers can provide stable reflections for 3D finger motion tracking. Muscles that activate the fingers extend through the forearm, whose motion manifests as vibrations on the forearm. By analyzing the variation in phases of reflected mmWave signals from the forearm, this paper designs mm4Arm, a system that tracks 3D finger motion. Nontrivial challenges arise due to the high dimensional search space, complex vibration patterns, diversity across users, hardware noise, etc. mm4Arm exploits anatomical constraints in finger motions and fuses them with machine learning architectures based on encoder-decoder and ResNets in enabling accurate tracking. A systematic performance evaluation with 10 users demonstrates a median error of 5.73° (location error of 4.07 mm) with robustness to multipath and natural variation in hand position/orientation. The accuracy is also consistent under non-line-of-sight conditions and clothing that might occlude the forearm. mm4Arm runs on smartphones with a latency of 19 ms and low energy overhead. 
    more » « less
  4. null (Ed.)
    Abstract Smartphone location sharing is a particularly sensitive type of information disclosure that has implications for users’ digital privacy and security as well as their physical safety. To understand and predict location disclosure behavior, we developed an Android app that scraped metadata from users’ phones, asked them to grant the location-sharing permission to the app, and administered a survey. We compared the effectiveness of using self-report measures commonly used in the social sciences, behavioral data collected from users’ mobile phones, and a new type of measure that we developed, representing a hybrid of self-report and behavioral data to contextualize users’ attitudes toward their past location-sharing behaviors. This new type of measure is based on a reflective learning paradigm where individuals reflect on past behavior to inform future behavior. Based on data from 380 Android smartphone users, we found that the best predictors of whether participants granted the location-sharing permission to our app were: behavioral intention to share information with apps, the “FYI” communication style, and one of our new hybrid measures asking users whether they were comfortable sharing location with apps currently installed on their smartphones. Our novel, hybrid construct of self-reflection on past behavior significantly improves predictive power and shows the importance of combining social science and computational science approaches for improving the prediction of users’ privacy behaviors. Further, when assessing the construct validity of the Behavioral Intention construct drawn from previous location-sharing research, our data showed a clear distinction between two different types of Behavioral Intention: self-reported intention to use mobile apps versus the intention to share information with these apps. This finding suggests that users desire the ability to use mobile apps without being required to share sensitive information, such as their location. These results have important implications for cybersecurity research and system design to meet users’ location-sharing privacy needs. 
    more » « less
  5. Internet of Things (IoT) device manufacturers provide little information to consumers about their security and data handling practices. Therefore, IoT consumers cannot make informed purchase choices around security and privacy. While prior research has found that consumers would likely consider security and privacy when purchasing IoT devices, past work lacks empirical evidence as to whether they would actually pay more to purchase devices with enhanced security and privacy. To fill this gap, we conducted a two-phase incentive compatible online study with 180 Prolific participants. We measured the impact of five security and privacy factors (e.g., access control) on participants’ purchase behaviors when presented individually or together on an IoT label. Participants were willing to pay a significant premium for devices with better security and privacy practices. The biggest price differential we found was for de-identified rather than identifiable cloud storage. Mainly due to its usability challenges, the least valuable improvement for participants was to have multi-factor authentication as opposed to passwords. Based on our findings, we provide recommendations on creating more effective IoT security and privacy labeling programs. 
    more » « less