skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Critical barriers to the large scale commercialization of silicon-containing batteries
Silicon has received a considerable amount of attention in the last few years because of its large lithiation capacity. Its widespread utilization in real-life lithium-ion batteries has so far been prevented by the plethora of challenges presented by this material. This review discusses the most promising technologies that have been put forward to address these issues. While silicon is now much closer to being compatible with commercial-grade storage devices, some critical barriers still deserve further attention. Most importantly, device performance is strongly dependent on particle size and size distribution, with these parameters strongly controlled by the particle synthesis technique. Moreover, the nanoparticle synthesis technique ultimately controls the material manufacturing cost and compatibility with large-scale utilization. These issues are discussed in detail, and recommendations to the community are provided.  more » « less
Award ID(s):
1940952
NSF-PAR ID:
10225571
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
2
Issue:
10
ISSN:
2516-0230
Page Range / eLocation ID:
4368 to 4389
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Low-pressure nonthermal flowing plasmas are widely used for the gas-phase synthesis of nanoparticles and quantum dots of materials that are difficult or impractical to synthesize using other techniques. To date, the impact of temporary electrostatic particle trapping in these plasmas has not been recognized, a process that may be leveraged to control particle properties. Here, we present experimental and computational evidence that, during their growth in the plasma, sub-10 nm silicon particles become temporarily confined in an electrostatic trap in radio-frequency excited plasmas until they grow to a size at which the increasing drag force imparted by the flowing gas entrains the particles, carrying them out of the trap. We demonstrate that this trapping enables the size filtering of the synthesized particles, leading to highly monodisperse particle sizes, as well as the electrostatic focusing of the particles onto the reactor centerline. Understanding of the mechanisms and utilization of such particle trapping will enable the design of plasma processes with improved size control and the ability to grow heterostructured nanoparticles. 
    more » « less
  2. null (Ed.)
    Interest in developing high performance lithium-ion rechargeable batteries has motivated research in precise control over the composition, phase, and morphology during materials synthesis of battery active material particles for decades. Coprecipitation, as one of the most reported methods in the literature to produce precursors for lithium-ion battery active materials, has drawn attention due to its simplicity, scalability, homogeneous mixing at the atomic scale, and tunability over particle morphology. This highlight summarizes the advancements that have been made in producing crystalline particles of tunable and complex morphologies via coprecipitation for use as lithium-ion battery precursor materials. Comparison among different crystallization reagents, solution conditions that influence the properties of crystal particles, and the fundamental knowledge from equilibrium and/or kinetic study of the coprecipitation processes, are systematically discussed. The research reports and guiding principles summarized in this highlight are meant to improve selections made by researchers to efficiently determine synthesis conditions. In addition, it is desired that the methods applied from the study of crystallization will inspire researchers to pursue further investigation of the nucleation and growth mechanisms of these coprecipitation processes, which will be necessary to achieve truly predictive particle synthesis. 
    more » « less
  3. Abstract

    Controlled synthesis of semiconductor nano/microparticles has attracted substantial attention for use in numerous applications from photovoltaics to photocatalysis and bioimaging due to the breadth of available physicochemical and optoelectronic properties. Microfluidic material synthesis strategies have recently been demonstrated as an effective technique for rapid development, controlled synthesis, and continuous manufacturing of solution‐processed semiconductor nano/microparticles, due to enhanced parametric control enabling precise tuning of material properties, size, and morphologies. In this review, the basics of microfluidic material synthesis approaches complemented with recent advances in the flow fabrication of metal oxide, chalcogenide, and perovskite semiconductor particles are discussed. Furthermore, advancements in artificial intelligence (AI)‐driven materials–space exploration and accelerated formulation optimization using modular microfluidic reactors are outlined. Finally, future directions for the fabrication of semiconducting materials in flow and the implementation of AI with automated microfluidic reactors for accelerated material discovery and development are presented.

     
    more » « less
  4. Silicon as a promising candidate for the next-generation high-capacity lithium-ion battery anode is characterized by outstanding capacity, high abundance, low operational voltage, and environmental benignity. However, large volume changes during Si lithiation and de-lithiation can seriously impair its long-term cyclability. Although extensive research efforts have been made to improve the electrochemical performance of Si-based anodes, there is a lack of efficient fabrication methods that are low cost, scalable, and self-assembled. In this report, co-axial fibrous silicon asymmetric membrane has been synthesized using a scalable and straightforward phase inversion method combined with dip coating as inspired by the hollow fiber membrane technology that has been successfully commercialized over the last decades to provide billions of gallons of purified drinking water worldwide. We demonstrate that ~ 90% initial capacity of co-axial fibrous Si asymmetric membrane electrode can be maintained after 300 cycles applying a current density of 400 mA g−1. The diameter of fibers, size of silicon particles, type of polymers, and exterior coating have been identified as critical factors that can influence the electrode stability, initial capacity, and rate performance. Much enhanced electrochemical performance can be harvested from a sample that has thinner fiber diameter, smaller silicon particle, lower silicon content, and porous carbon coating. This efficient and scalable approach to prepare high-capacity silicon-based anode with outstanding cyclability is fully compatible with industrial roll-to-roll processing technology, thus bearing a great potential for its future commercialization. 
    more » « less
  5. Abstract

    Porphyrinic metal–organic frameworks (PMOFs) are very appealing electrocatalytic materials, in part, due to their highly porous backbone, well‐defined and dispersed metal active sites, and their long‐range order. Herein a series of (Co)PCN222 (PCN: porous coordination network) (nano)particles with different sizes are successfully prepared by coordination modulation synthesis. These particles exhibit stability in 0.1mHClO4electrolyte with no obvious particle size or compositional changes observed after being soaked for 3 days in the electrolyte or during electrocatalysis. This long‐term stability enables the in‐depth investigation into the electrocatalytic oxygen reduction, and it is further demonstrated that the (Co)PCN222 particle size correlates with its catalytic activity. Of the three particle sizes evaluated (characteristic length scales of 200, 500, and 1000 nm), the smallest size demonstrates the highest mass activity while the largest size has the highest surface area normalized activity. Together these results highlight the importance of determining the structural stability of framework catalysts and provide insights into the important roles of particle size, opening new avenues to investigate and improve the electrocatalytic performance of this class of framework material.

     
    more » « less