skip to main content


Title: 3D printing of biofiber-reinforced composites and their mechanical properties: a review
Purpose This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing technologies, including powder-based, material extrusion, solid-sheet and liquid-based systems. Detailed information about each process, including materials used and process design, are described, with the resultant products’ mechanical properties compared with those of 3D-printed parts produced from pure resin or different material combinations. In most processes introduced in this paper, biofibers are beneficial in improving the mechanical properties of 3D-printed parts and the biodegradability of the parts made using these green materials is also greatly improved. However, research on 3D printing of biofiber-reinforced composites is still far from complete, and there are still many further studies and research areas that could be explored in the future. Design/methodology/approach The paper starts with an overview of the current scenario of the composite manufacturing industry and then the problems of advanced composite materials are pointed out, followed by an introduction of biocomposites. The main body of the paper covers literature reviews of recently emerged 3D printing technologies that were applied to biofiber-reinforced composite materials. This part is classified into subsections based on the form of the starting materials used in the 3D printing process. A comprehensive conclusion is drawn at the end of the paper summarizing the findings by the authors. Findings Most of the biofiber-reinforced 3D-printed products exhibited improved mechanical properties than products printed using pure resin, indicating that biofibers are good replacements for synthetic ones. However, synthetic fibers are far from being completely replaced by biofibers due to several of their disadvantages including higher moisture absorbance, lower thermal stability and mechanical properties. Many studies are being performed to solve these problems, yet there are still some 3D printing technologies in which research concerning biofiber-reinforced composite parts is quite limited. This paper unveils potential research directions that would further develop 3D printing in a sustainable manner. Originality/value This paper is a summary of attempts to use biofibers as reinforcements together with different resin systems as the starting material for 3D printing processes, and most of the currently available 3D printing techniques are included herein. All of these attempts are solutions to some principal problems with current 3D printing processes such as the limit in the variety of materials and the poor mechanical performance of 3D printed parts. Various types of biofibers are involved in these studies. This paper unveils potential research directions that would further widen the use of biofibers in 3D printing in a sustainable manner.  more » « less
Award ID(s):
1900699
NSF-PAR ID:
10225728
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Rapid Prototyping Journal
Volume:
26
Issue:
6
ISSN:
1355-2546
Page Range / eLocation ID:
1113 to 1129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    3D printing is an essential tool for rapid prototyping in a variety of sectors such as automotive and public health. The 3D printing market is booming, and it is projected that it will continue to thrive in the coming years. Unfortunately, this rapid growth has led to an alarming increase in the amount of 3D printed plastic waste. 3D printing processes such as stereolithography (SLA) and digital light projection (DLP) in particular generally produce petroleum-based thermosets that are further worsening the plastic pollution problem. To mitigate this 3D printed plastic waste, sustainable alternatives to current 3D printing materials must be developed. The present review provides a comprehensive overview of the sustainable advances in SLA/DLP 3D printing to date and offers a perspective on future directions to improve sustainability in this field. The entire life cycle of 3D printed parts has been assessed by considering the feedstock selection and the end-of-use of the material. The feedstock selection section details how renewable feedstocks (from lignocellulosic biomass, oils, and animal products) or waste feedstocks ( e.g. , waste cooking oil) have been used to develop SLA/DLP resins. The end-of-use section describes how materials can be reprocessed ( e.g. thermoplastic materials or covalent adaptable networks) or degraded (through enzymatic or acid/base hydrolysis of sensitive linkages) after end-of-use. In addition, studies that have employed green chemistry principles in their resin synthesis and/or have shown their sustainable 3D printed parts to have mechanical properties comparable to commercial materials have been highlighted. This review also investigates how aspects of sustainability such as recycling for feedstock/end-of-use or biodegradation of 3D printed parts in natural environments can be incorporated as future research directions in SLA/DLP. 
    more » « less
  2. Beckwith, S. ; Flinn, B. ; Dustin, J. (Ed.)
    A novel additive manufacturing process utilizing the laminated object manufacturing (LOM) technology with woven natural fiber-reinforced biopolymer is investigated in this paper. Traditional synthetic composite materials are products from nonrenewable crude oil with limited end-of-life options, and therefore not environmentally friendly. The continuous woven natural fiber is used to significantly strengthen the mechanical properties of biocomposites and PLA biopolymer as the matrix made the material completely biodegradable. This is one of the promising replacements for synthetic composites in applications such as automotive panels, constructive materials, and sports and musical instruments. A LOM 3D printer prototype has been designed and built by the team using a laser beam in cutting the woven natural fiber reinforcement and molten PLA powder to bind layers together. Tensile and flexural properties of the LOM 3D printed biocomposites were measured using ASTM test standards and then compared with corresponding values measured from pure PLA specimens 3D printed through FDM. Improved mechanical properties from LOM 3D-printed biocomposites were identified by the team. SEM imaging was performed to identify the polymer infusing and fiber-matrix binding situations. This research took advantage of both the material and process’s benefits and combine them into one sustainable practice. 
    more » « less
  3. Additive manufacturing, otherwise known as three-dimensional (3D) printing, is a rapidly growing technique that is increasingly used for the production of polymer products, resulting in an associated increase in plastic waste generation. Waste from a particular class of 3D-printing, known as vat photopolymerization, is of particular concern, as these materials are typically thermosets that cannot be recycled or reused. Here, we report a mechanical recycling process that uses cryomilling to generate a thermoset powder from photocured parts that can be recycled back into the neat liquid monomer resin. Mechanical recycling with three different materials is demonstrated: two commercial resins with characteristic brittle and elastic mechanical properties and a third model material formulated in-house. Studies using photocured films showed that up to 30 wt% of the model material could be recycled producing a toughness of 2.01 ± 0.55 MJ/m3, within error of neat analogues (1.65 ± 0.27 MJ/m3). Using dynamic mechanical analysis and atomic force microscopy-based infrared spectroscopy, it was determined that monomers diffuse into the recycled powder particles, creating interpenetrating networks upon ultraviolet (UV) exposure. This process mechanically adheres the particles to the matrix, preventing them from acting as failure sites under a tensile load. Finally, 3D-printing of the commercial brittle material with 10 wt% recycle content produced high quality parts that were visually similar. The maximum stress (46.7 ± 6.2 MPa) and strain at break (11.6 ± 2.3%) of 3D-printed parts with recycle content were within error the same as neat analogues (52.0 ± 1.7 MPa; 13.4 ± 1.8%). Overall, this work demonstrates mechanical recycling of photopolymerized thermosets and shows promise for the reuse of photopolymerized 3D-printing waste. 
    more » « less
  4. Desktop 3D printing stereolithography (SLA) is a fabrication technique based on photopolymerization that can be used to efficiently create novel reaction devices for laboratory geochemistry with complex features (e.g. internal channels, small volumes) that are beyond the capabilities of traditional machining methods. However, the stability of 3D printed parts for low-temperature aqueous geochemical conditions has not been carefully evaluated. Furthermore, it is unclear what criteria should be used when attempting to optimize the mechanical and chemical properties during post-processing steps. Addressing these challenges is important for determining the suitability of 3D printed devices for laboratory investigations such as mineral precipitation/dissolution ex- periments. Here, we use thermogravimetric analysis (TGA) profiles, dynamic mechanical analysis (DMA), and chemical extraction of leachables to show how ultraviolet (UV) post-curing can optimize properties of a com- mercial photo-reactive resin (Formlabs Standard Clear). The mechanical and chemical stability of the post-cured material was enhanced and a working temperature of up to 80 °C was determined. We further provide data showing the stability and compatibility of the material in aqueous conditions of pH 0, 5.7 and 12. As SLA 3D printing is still an emerging and rapidly developing technology, the method presented here will provide a fra- mework for assessing how new printer types and materials (i.e. resins) impact the suitability of SLA printed devices for future experimental studies. 
    more » « less
  5. Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth. 
    more » « less