skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterizing the Water Wire in the Gramicidin Channel Found by Monte Carlo Sampling Using Continuum Electrostatics and in Molecular Dynamics Trajectories with Conventional or Polarizable Force Fields
• Water is the primary cellular solvent, yet is challenging to simulate computationally. Here we simulate water molecules in the Gramicidin A channel comparing Monte Carlo (MC) sampling with a continuum electrostatics and Molecular Dynamics (MD) calculations with the non-polarizable CHARMM36 and polarizable Drude force fields. • These give different water properties, with classical MD yielding well oriented water wires, while the Drude or continuum electrostatics force fields lead to more disordered water molecules, often changing orientation in the middle of the channel.  more » « less
Award ID(s):
1855942
PAR ID:
10225739
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Computational Biophysics and Chemistry
Volume:
20
Issue:
02
ISSN:
2737-4165
Page Range / eLocation ID:
111 to 130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Triacylglycerols (TG) are the primary neutral lipids in lipid droplets (LDs), organelles responsible for lipid storage, metabolism, and signaling. Molecular dynamics (MD) simulations have provided valuable insight into LD structure, but fixed-charge force fields struggle to capture TG behavior across both hydrophobic cores and polar interfaces. Here, we develop and evaluate a polarizable TG model using the Drude2023 lipid force field and benchmark its performance against experimental measurements of bulk density, TG−water interfacial tension, core hydration, and monolayer expansion. The Drude model accurately reproduces the experimental properties and captures key monolayer features such as surface-oriented TGs (SURF-TGs) and chemically distinct membrane packing defects. Compared to fixed-charge models such as C36-standard and C36-cutoff, the Drude polarizable model is the only force field able to capture the dual nature of TG at polar−nonpolar interfaces like the LD monolayer and more homogeneous hydrophobic environments, like the LD core. However, C36-standard is consistent with the Drude results for the LD monolayer, while C36-cutoff is consistent with the decreased hydration in the LD core. Even with large applied surface tensions, C36-cutoff does not produce Drude-like LD monolayer properties. These results highlight the importance of dynamic polarizability and establish Drude2023 as a more reliable framework for simulating TG in heterogeneous systems like LDs. 
    more » « less
  2. Electrostatic interactions are fundamental to biomolecular structure, stability, and function. While these interactions are traditionally modeled using fixed-charge force fields, such approaches are not transferable among di↵erent molecular environments. Polarizable force fields, such as DRUDE, address this limitation by explicitly incorpo- rating polarization e↵ect. However, their performance does not uniformly surpass that of nonpolarizable force fields, since multiple factors such as bonded terms, dihedral correction maps, and solvent screening also modulate biomolecular dynamics. In this work, we study the Im7 protein to evaluate the structural and dynamic behaviors of non-polarizable (CHARMM36m) and polarizable (DRUDE2019) force fields relative to NMR experiments. Our simulations show that DRUDE better stabilizes ↵-helices than CHARMM36m, including shorter ones that contain helix-breaking residues. However, both force fields underestimate loop dynamics, particularly in the loop I region, mainly due to restricted dihedral angle sampling. Moreover, salt bridge analysis reveals that DRUDE and CHARMM36m preferentially stabilize di↵erent salt bridges, driven by ionic interactions, charge screening by the environment, and neighboring residue flex- ibility Additionally, the latest DRUDE2019 variant, featuring updated NBFIX and NBTHOLE parameters for ion-protein interactions, demonstrated improved accuracy in modeling Na+-protein interactions. These findings are further supported by simu- lations of CBD1, a protein with a -sheet and flexible loops, which exhibited similar trends of stable structured regions and restricted loop dynamics across both force fields. These findings highlight the need to balance bonded and non-bonded interactions along with dihedral correction maps while incorporating polarization e↵ects to improve the accuracy of force fields to model protein structure and dynamics. 
    more » « less
  3. Potassium channels modulate various cellular functions through efficient and selective conduction of K + ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K + ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated by ab initio calculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations. 
    more » « less
  4. Fluorescent light-up aptamers (FLAPs) are well-performed biosensors for cellular imaging and the detection of different targets of interest, including RNA, non-nucleic acid molecules, metal ions, and so on. They could be easily designed and emit a strong fluorescence signal once bound to specified fluorogens. Recently, one unique aptamer called Mango-II has been discovered to possess a strong affinity and excellent fluorescent properties with fluorogens TO1-Biotin and TO3-Biotin. To explore the binding mechanisms, computational simulations have been performed to obtain structural and thermodynamic information about FLAPs at atomic resolution. AMOEBA polarizable force field, with the capability of handling the highly charged and flexible RNA system, was utilized for the simulation of Mango-II with TO1-Biotin and TO3-Biotin in this work. The calculated binding free energy using published crystal structures is in excellent agreement with the experimental values. Given the challenges in modeling complex RNA dynamics, our work demonstrates that MD simulation with a polarizable force field is valuable for understanding aptamer-fluorogen binding and potentially designing new aptamers or fluorogens with better performance. 
    more » « less
  5. Abstract Reliable simulations of molecules in condensed phase require the combination of an accurate quantum mechanical method for the core region, and a realistic model to describe the interaction with the environment. Additionally, this combination should not significantly increase the computational cost of the calculation compared to the corresponding in vacuo case. In this review, we describe the combination of methods based on coupled cluster (CC) theory with polarizable classical models for the environment. We use the polarizable continuum model (PCM) of solvation to discuss the equations, but we also show how the same theoretical framework can be extended to polarizable force fields. The theory is developed within the perturbation theory energy and singles‐T density (PTES) scheme, where the environmental response is computed with the CC single excitation amplitudes as an approximation for the full one‐particle reduced density. The CC‐PTES combination provides the best compromise between accuracy and computational effort for CC calculations in condensed phase, because it includes the response of the environment to the correlation density at the same computational cost of in vacuo CC. We discuss a number of numerical applications for ground and excited state properties, based on the implementation of CC‐PTES with single and double excitations (CCSD‐PTES), which show the reliability and computational efficiency of the method in reproducing experimental or full‐CC data. This article is characterized under:Electronic Structure Theory > Ab Initio Electronic Structure MethodsElectronic Structure Theory > Combined QM/MM MethodsSoftware > Quantum Chemistry 
    more » « less