This content will become publicly available on August 11, 2026
Title: Comparative Analysis of Polarizable and Nonpolarizable CHARMM Family Force Fields for Proteins with Flexible Loops and High Charge Density
Electrostatic interactions are fundamental to biomolecular structure, stability, and function. While these interactions are traditionally modeled using fixed-charge force fields, such approaches are not transferable among di↵erent molecular environments. Polarizable force fields, such as DRUDE, address this limitation by explicitly incorpo- rating polarization e↵ect. However, their performance does not uniformly surpass that of nonpolarizable force fields, since multiple factors such as bonded terms, dihedral correction maps, and solvent screening also modulate biomolecular dynamics. In this work, we study the Im7 protein to evaluate the structural and dynamic behaviors of non-polarizable (CHARMM36m) and polarizable (DRUDE2019) force fields relative to NMR experiments. Our simulations show that DRUDE better stabilizes ↵-helices than CHARMM36m, including shorter ones that contain helix-breaking residues. However, both force fields underestimate loop dynamics, particularly in the loop I region, mainly due to restricted dihedral angle sampling. Moreover, salt bridge analysis reveals that DRUDE and CHARMM36m preferentially stabilize di↵erent salt bridges, driven by ionic interactions, charge screening by the environment, and neighboring residue flex- ibility Additionally, the latest DRUDE2019 variant, featuring updated NBFIX and NBTHOLE parameters for ion-protein interactions, demonstrated improved accuracy in modeling Na+-protein interactions. These findings are further supported by simu- lations of CBD1, a protein with a -sheet and flexible loops, which exhibited similar trends of stable structured regions and restricted loop dynamics across both force fields. These findings highlight the need to balance bonded and non-bonded interactions along with dihedral correction maps while incorporating polarization e↵ects to improve the accuracy of force fields to model protein structure and dynamics. more »« less
Zhang, Yingying; Haider, Kamran; Kaur, Divya; Ngo, Van A.; Cai, Xiuhong; Mao, Junjun; Khaniya, Umesh; Zhu, Xuyu; Noskov, Sergei; Lazaridis, Themis; et al
(, Journal of Computational Biophysics and Chemistry)
null
(Ed.)
• Water is the primary cellular solvent, yet is challenging to simulate computationally. Here we simulate water molecules in the Gramicidin A channel comparing Monte Carlo (MC) sampling with a continuum electrostatics and Molecular Dynamics (MD) calculations with the non-polarizable CHARMM36 and polarizable Drude force fields. • These give different water properties, with classical MD yielding well oriented water wires, while the Drude or continuum electrostatics force fields lead to more disordered water molecules, often changing orientation in the middle of the channel.
Braun, R Jay; Swanson, Jessica MJ
(, Journal of Chemical Theory and Computation)
Triacylglycerols (TG) are the primary neutral lipids in lipid droplets (LDs), organelles responsible for lipid storage, metabolism, and signaling. Molecular dynamics (MD) simulations have provided valuable insight into LD structure, but fixed-charge force fields struggle to capture TG behavior across both hydrophobic cores and polar interfaces. Here, we develop and evaluate a polarizable TG model using the Drude2023 lipid force field and benchmark its performance against experimental measurements of bulk density, TG−water interfacial tension, core hydration, and monolayer expansion. The Drude model accurately reproduces the experimental properties and captures key monolayer features such as surface-oriented TGs (SURF-TGs) and chemically distinct membrane packing defects. Compared to fixed-charge models such as C36-standard and C36-cutoff, the Drude polarizable model is the only force field able to capture the dual nature of TG at polar−nonpolar interfaces like the LD monolayer and more homogeneous hydrophobic environments, like the LD core. However, C36-standard is consistent with the Drude results for the LD monolayer, while C36-cutoff is consistent with the decreased hydration in the LD core. Even with large applied surface tensions, C36-cutoff does not produce Drude-like LD monolayer properties. These results highlight the importance of dynamic polarizability and establish Drude2023 as a more reliable framework for simulating TG in heterogeneous systems like LDs.
Nochebuena, Jorge; Liu, Shubin; Cisneros, G Andrés
(, The Journal of Chemical Physics)
QM/MM methods have been used to study electronic structure properties and chemical reactivity in complex molecular systems where direct electronic structure calculations are not feasible. In our previous work, we showed that non-polarizable force fields, by design, describe intermolecular interactions through pairwise interactions, overlooking many-body interactions involving three or more particles. In contrast, polarizable force fields account partially for many-body effects through polarization, but still handle van der Waals and permanent electrostatic interactions pairwise. We showed that despite those limitations, polarizable and non-polarizable force fields can reproduce relative cooperativity achieved using density functional theory due to error compensation mechanisms. In this contribution, we assess the performance of QM/MM methods in reproducing these phenomena. Our study highlights the significance of the QM region size and force field choice in QM/MM calculations, emphasizing the importance of parameter validation to obtain accurate interaction energy predictions.
Yang, Xudong; Liu, Chengwen; Ren, Pengyu
(, Journal of Computational Biophysics and Chemistry)
Bonded interactions are fundamental ingredients of molecular mechanics force fields because they directly determine the local structure of a molecule. In this work, we parametrize the advanced bonded energy functionals that consider the vibrational anharmonicity, the coupling effects, and the out-of-plane bending for sp2-hybridized atoms. It is expected that these models can describe the spectroscopic properties and overall structures of a molecule more accurately when they are used with polarizable AMOEBA-based force fields.
Rick, Steven W.; Thompson, Ward H.
(, The Journal of Chemical Physics)
A large number of force fields have been proposed for describing the behavior of liquid water within classical atomistic simulations, particularly molecular dynamics. In the past two decades, models that incorporate molecular polarizability and even charge transfer have become more prevalent, in attempts to develop more accurate descriptions. These are frequently parameterized to reproduce the measured thermodynamics, phase behavior, and structure of water. On the other hand, the dynamics of water is rarely considered in the construction of these models, despite its importance in their ultimate applications. In this paper, we explore the structure and dynamics of polarizable and charge-transfer water models, with a focus on timescales that directly or indirectly relate to hydrogen bond (H-bond) making and breaking. Moreover, we use the recently developed fluctuation theory for dynamics to determine the temperature dependence of these properties to shed light on the driving forces. This approach provides key insight into the timescale activation energies through a rigorous decomposition into contributions from the different interactions, including polarization and charge transfer. The results show that charge transfer effects have a negligible effect on the activation energies. Furthermore, the same tension between electrostatic and van der Waals interactions that is found in fixed-charge water models also governs the behavior of polarizable models. The models are found to involve significant energy–entropy compensation, pointing to the importance of developing water models that accurately describe the temperature dependence of water structure and dynamics.
Prusty, Sangram, Brüschweiler, Rafael, and Cui, Qiang. Comparative Analysis of Polarizable and Nonpolarizable CHARMM Family Force Fields for Proteins with Flexible Loops and High Charge Density. Retrieved from https://par.nsf.gov/biblio/10647367. Journal of Chemical Information and Modeling 65.15 Web. doi:10.1021/acs.jcim.5c01328.
Prusty, Sangram, Brüschweiler, Rafael, & Cui, Qiang. Comparative Analysis of Polarizable and Nonpolarizable CHARMM Family Force Fields for Proteins with Flexible Loops and High Charge Density. Journal of Chemical Information and Modeling, 65 (15). Retrieved from https://par.nsf.gov/biblio/10647367. https://doi.org/10.1021/acs.jcim.5c01328
Prusty, Sangram, Brüschweiler, Rafael, and Cui, Qiang.
"Comparative Analysis of Polarizable and Nonpolarizable CHARMM Family Force Fields for Proteins with Flexible Loops and High Charge Density". Journal of Chemical Information and Modeling 65 (15). Country unknown/Code not available: American Chemical Society. https://doi.org/10.1021/acs.jcim.5c01328.https://par.nsf.gov/biblio/10647367.
@article{osti_10647367,
place = {Country unknown/Code not available},
title = {Comparative Analysis of Polarizable and Nonpolarizable CHARMM Family Force Fields for Proteins with Flexible Loops and High Charge Density},
url = {https://par.nsf.gov/biblio/10647367},
DOI = {10.1021/acs.jcim.5c01328},
abstractNote = {Electrostatic interactions are fundamental to biomolecular structure, stability, and function. While these interactions are traditionally modeled using fixed-charge force fields, such approaches are not transferable among di↵erent molecular environments. Polarizable force fields, such as DRUDE, address this limitation by explicitly incorpo- rating polarization e↵ect. However, their performance does not uniformly surpass that of nonpolarizable force fields, since multiple factors such as bonded terms, dihedral correction maps, and solvent screening also modulate biomolecular dynamics. In this work, we study the Im7 protein to evaluate the structural and dynamic behaviors of non-polarizable (CHARMM36m) and polarizable (DRUDE2019) force fields relative to NMR experiments. Our simulations show that DRUDE better stabilizes ↵-helices than CHARMM36m, including shorter ones that contain helix-breaking residues. However, both force fields underestimate loop dynamics, particularly in the loop I region, mainly due to restricted dihedral angle sampling. Moreover, salt bridge analysis reveals that DRUDE and CHARMM36m preferentially stabilize di↵erent salt bridges, driven by ionic interactions, charge screening by the environment, and neighboring residue flex- ibility Additionally, the latest DRUDE2019 variant, featuring updated NBFIX and NBTHOLE parameters for ion-protein interactions, demonstrated improved accuracy in modeling Na+-protein interactions. These findings are further supported by simu- lations of CBD1, a protein with a -sheet and flexible loops, which exhibited similar trends of stable structured regions and restricted loop dynamics across both force fields. These findings highlight the need to balance bonded and non-bonded interactions along with dihedral correction maps while incorporating polarization e↵ects to improve the accuracy of force fields to model protein structure and dynamics.},
journal = {Journal of Chemical Information and Modeling},
volume = {65},
number = {15},
publisher = {American Chemical Society},
author = {Prusty, Sangram and Brüschweiler, Rafael and Cui, Qiang},
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.