skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aggregation in viscoelastic emulsion droplet gels with capillarity-driven rearrangements
Arrested, or partial, coalescence of viscoelastic emulsion droplets can occur when elastic resistance to deformation offsets droplet surface area minimization. Arrest is a critical element of food and consumer product microstructure and performance, but direct studies of structural arrest and rearrangement have been carried out using only two or three droplets at a time. The question remains whether the behavior of small numbers of droplets also occurs in larger, more realistic many-droplet systems. Here we study two-dimensional aggregation and arrested coalescence of emulsions containing ∼1000 droplets and find that the restructuring mechanisms observed for smaller systems have a large effect on local packing in multidroplet aggregates, but surprisingly do not significantly alter overall mass scaling in the aggregates. Specifically, increased regions of hexagonal packing are observed as the droplet solids level, and thus elasticity, is decreased because greater degrees of capillary force-driven restructuring are possible. Diffusion-limited droplet aggregation simulations that account for the restructuring mechanisms agree with the experimental results and suggest a basis for prediction of larger-scale network properties and bulk emulsion behavior.  more » « less
Award ID(s):
1654283
PAR ID:
10225842
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
23
ISSN:
1744-683X
Page Range / eLocation ID:
5506 to 5513
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arrested coalescence occurs in Pickering emulsions where colloidal particles adsorbed on the surface of the droplets become crowded and inhibit both relaxation of the droplet shape and further coalescence. The resulting droplets have a nonuniform distribution of curvature and, depending on the initial coverage, may incorporate a region with negative Gaussian curvature around the neck that bridges the two droplets. Here, we resolve the relative influence of the curvature and the kinetic process of arrest on the microstructure of the final state. In the quasistatic case, defects are induced and distributed to screen the Gaussian curvature. Conversely, if the rate of area change per particle exceeds the diffusion constant of the particles, the evolving surface induces local solidification reminiscent of jamming fronts observed in other colloidal systems. In this regime, the final structure is shown to be strongly affected by the compressive history just prior to arrest, which can be predicted from the extrinsic geometry of the sequence of surfaces in contrast to the intrinsic geometry that governs the static regime. 
    more » « less
  2. Abstract The coacervation of alpha‐synuclein (αSyn) into cytotoxic oligomers and amyloid fibrils are considered pathological hallmarks of Parkinson's disease. While aggregation is central to amyloid diseases, liquid–liquid phase separation (LLPS) and its interplay with aggregation have gained increasing interest. Previous work shows that factors promoting or inhibiting aggregation have similar effects on LLPS. This study provides a detailed scanning of a wide range of parameters, including protein, salt and crowding concentrations at multiple pH values, revealing different salt dependencies of aggregation and LLPS. The influence of salt on aggregation under crowding conditions follows a non‐monotonic pattern, showing increased effects at medium salt concentrations. This behavior can be elucidated through a combination of electrostatic screening and salting‐out effects on the intramolecular interactions between the N‐terminal and C‐terminal regions of αSyn. By contrast, this study finds a monotonic salt dependence of LLPS due to intermolecular interactions. Furthermore, it observes time evolution of the two distinct assembly states, with macroscopic fibrillar‐like bundles initially forming at medium salt concentration but subsequently converting into droplets after prolonged incubation. The droplet state is therefore capable of inhibiting aggregation or even dissolving aggregates through heterotypic interactions, thus preventing αSyn from its dynamically arrested state. 
    more » « less
  3. Core formation in small planetary bodies likely involves percolation of immiscible liquids (e.g. S- and C- rich iron alloys) through pore spaces in a silicate medium. The manner in which this phenomenon occurs is not fully understood. Furthermore, it is unknown whether the metallic melts can physically segregate during percolation. To improve our understanding of core formation in small planetesimals, we performed analog experiments. We used an emulsion of oil and water to simulate an emulsion of S-rich and C-rich iron alloys, respectively. The experiments were performed in a Hele-Shaw cell, a thin “channel” made of two acrylic plates (51 cm x 15 cmx 1.3 cm) kept apart with a thin aluminum plate (0.27 mm). A U-shaped cut out of the aluminum plate formed the channel. We used a syringe pump to inject the emulsion into the channel through a hole in the top plate. We investigated the effect of injection rate and droplet size on the percolation behavior of the emulsion. We observed that droplet velocity was size dependent. The smallest droplet size detected was 0.0133 mm2 with a velocity of 0.67 mm/s. Medium size droplets ranged from 0.03mm2 – ~10 mm2 with average velocity of ~0.43 mm/s. Larger droplets moved faster: the largest droplet, with an area of 91.4 mm2, had a velocity of 7.95 mm/s. We suggest that (1) suspended droplets slow down when they begin to touch the Hele-Shaw plates (medium size droplets), and (2) droplets flow faster when they become large enough to deform with the flow. We also tested percolation through a channel filled with polydisperse acrylic particles of diameter < 50 µm. When injected into the granular matrix, the oil formed a wetting front while the water advanced in “pulses”. These pulses may represent the faster flow of larger water droplets. In conclusion, the size of the droplets affects their velocity and possibly their ability to migrate through pore networks. The results suggest that immiscible liquids could potentially segregate due to different percolation efficiencies of the non-wetting/wetting phases. Consequently, this would affect the distribution of the metallic components within differentiated planetesimals. 
    more » « less
  4. Forming an interface between immiscible fluids incurs a free-energy cost that usually favors minimizing the interfacial area. An emulsion droplet of fixed volume therefore tends to form a sphere, and pairs of droplets tend to coalesce. Surfactant molecules adsorbed to the droplets' surfaces stabilize emulsions by providing a kinetic barrier to coalescence. Here, we show that the pressure exerted by bound surfactant molecules also competes with the droplet's intrinsic surface tension and can reverse the sign of the overall surface free energy. The onset of negative surface tension favors maximizing surface area and therefore favors elongation into a wormlike morphology. Analyzing this system in the Gibbs grand canonical ensemble reveals a phase transition between spherical and wormlike emulsions that is governed by the chemical potential of surfactant molecules in solution. Predictions based on this model agree with the observed behavior of an experimental model system composed of lipid-stabilized silicone oil droplets in an aqueous surfactant solution. 
    more » « less
  5. The seminal study by G. I. Taylor (1923) has inspired generations of work in exploring and characterizing Taylor–Couette (TC) flow instabilities and laid the foundation for research of complex fluid systems requiring a controlled hydrodynamic environment. Here, TC flow with radial fluid injection is used to study the mixing dynamics of complex oil-in-water emulsions. Concentrated emulsion simulating oily bilgewater is radially injected into the annulus between rotating inner and outer cylinders, and the emulsion is allowed to disperse through the flow field. The resultant mixing dynamics are investigated, and effective intermixing coefficients are calculated through measured changes in the intensity of light reflected by the emulsion droplets in fresh and salty water. The impacts of the flow field and mixing conditions on the emulsion stability are tracked via changes in droplet size distribution (DSD), and the use of emulsified droplets as tracer particles is discussed in terms of changes in the dispersive Péclet, Capillary and Weber numbers. For oily wastewater systems, the formation of larger droplets is known to yield better separation during a water treatment process, and the final DSD observed here is found to be tunable based on salt concentration, observation time and mixing flow state in the TC cell. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminalPhilosophical Transactionspaper (part 2)’. 
    more » « less