skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dispersion and mixing dynamics of complex oil-in-water emulsions in Taylor–Couette flows
The seminal study by G. I. Taylor (1923) has inspired generations of work in exploring and characterizing Taylor–Couette (TC) flow instabilities and laid the foundation for research of complex fluid systems requiring a controlled hydrodynamic environment. Here, TC flow with radial fluid injection is used to study the mixing dynamics of complex oil-in-water emulsions. Concentrated emulsion simulating oily bilgewater is radially injected into the annulus between rotating inner and outer cylinders, and the emulsion is allowed to disperse through the flow field. The resultant mixing dynamics are investigated, and effective intermixing coefficients are calculated through measured changes in the intensity of light reflected by the emulsion droplets in fresh and salty water. The impacts of the flow field and mixing conditions on the emulsion stability are tracked via changes in droplet size distribution (DSD), and the use of emulsified droplets as tracer particles is discussed in terms of changes in the dispersive Péclet, Capillary and Weber numbers. For oily wastewater systems, the formation of larger droplets is known to yield better separation during a water treatment process, and the final DSD observed here is found to be tunable based on salt concentration, observation time and mixing flow state in the TC cell. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminalPhilosophical Transactionspaper (part 2)’.  more » « less
Award ID(s):
2011401
PAR ID:
10506675
Author(s) / Creator(s):
; ;
Publisher / Repository:
Phil. Trans. R. Soc. A
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
381
Issue:
2246
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Since Taylor’s seminal paper, the existence of large-scale quasi-axisymmetric structures has been a matter of interest when studying Taylor–Couette flow. In this article, we probe their formation in the highly turbulent regime by conducting a series of numerical simulations at a fixed Reynolds number Re s = 3.6 × 10 4 while varying the Coriolis parameter to analyse the flow characteristics as the structures arise and dissipate. We show how the Coriolis force induces a one-way coupling between the radial and azimuthal velocity fields inside the boundary layer, but in the bulk, there is a two-way coupling that causes competing effects. We discuss how this complicates the analogy of narrow-gap Taylor–Couette to other convective flows. We then compare these statistics with a similar shear flow without no-slip boundary layers, showing how this double coupling causes very different effects. We finish by reflecting on the possible origins of turbulent Taylor rolls. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 1)’. 
    more » « less
  2. Controlling the downhole pressure is an important parameter for successful and safe drilling operations. Several types of weighting agents (i.e., high-density particles), traditionally barite particles, are added to maintain the desired density of the drilling fluid (DF). The DF density is an important design parameter for preventing multiple drilling complications. These issues are caused by the settling of the dense particles, an undesired phenomenon also referred to as sagging. Therefore, there is a need to understand the settling characteristics of heavy particles in such scenarios. To this end, simultaneous measurements of liquid phase flow patterns and particle settling velocities have been conducted in a Taylor-Couette (TC) cell with a rotating inner cylinder and stationary outer cylinder separated by an annular gap of 9.0 mm. Liquid flow patterns and particle settling velocities have been measured using particle image velocimetry (PIV) and particle tracking velocimetry (PTV) techniques, respectively. Experiments have been performed by varying the rotational speed of the inner cylinder up to 200 rev/min, which is used in normal drilling operations. Spherical particles with diameters of 3.0 mm or 4.0 mm and densities between 1.2 g/cm3 and 3.95 g/cm3 were used. The liquid phases studied included deionized (DI) water and mineral oil, which are the basic components of a non-Newtonian DF with a shear-thinning viscosity. The DF is a mud-like emulsion of opaque appearance, which impedes the ability to observe the liquid flow field and particle settling in the TC cell. To address this issue, a solution of carboxymethyl cellulose (CMC) with a 6% weight concentration in DI water was used. This non-Newtonian solution displays shear-thinning rheological behavior and was used as a transparent alternative to the opaque DF. For water, PIV results have shown wavy vortex flow (WVF) to turbulent Taylor vortex flow (TTVF), which agrees with the flow patterns reported in the literature. For mineral oil, circular Couette flow (CCF) was observed at up to 100 rev/min and vortex formation at 200 rev/min. For CMC, no vortex formation was observed up to 200 rev/min, only CCF. The settling velocities for all particles in water matched with the particle settling velocities predicted using the Basset-Boussinesq-Oseen (BBO) equation of motion. For mineral oil and CMC, the results did not match well with the predicted settling velocities, especially for heavy particles due possibly to the radial particle migration and interactions with the outer cylinder wall. 
    more » « less
  3. A concise review is given of astrophysically motivated experimental and theoretical research on Taylor–Couette flow. The flows of interest rotate differentially with the inner cylinder faster than the outer, but are linearly stable against Rayleigh’s inviscid centrifugal instability. At shear Reynolds numbers as large as 10 6 , hydrodynamic flows of this type (quasi-Keplerian) appear to be nonlinearly stable: no turbulence is seen that cannot be attributed to interaction with the axial boundaries, rather than the radial shear itself. Direct numerical simulations agree, although they cannot yet reach such high Reynolds numbers. This result indicates that accretion-disc turbulence is not purely hydrodynamic in origin, at least insofar as it is driven by radial shear. Theory, however, predicts linear magnetohydrodynamic (MHD) instabilities in astrophysical discs: in particular, the standard magnetorotational instability (SMRI). MHD Taylor–Couette experiments aimed at SMRI are challenged by the low magnetic Prandtl numbers of liquid metals. High fluid Reynolds numbers and careful control of the axial boundaries are required. The quest for laboratory SMRI has been rewarded with the discovery of some interesting inductionless cousins of SMRI, and with the recently reported success in demonstrating SMRI itself using conducting axial boundaries. Some outstanding questions and near-future prospects are discussed, especially in connection with astrophysics. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 2)’. 
    more » « less
  4. Yongjin J. Zhou (Ed.)
    Abstract A new biomanufacturing platform combining intracellular metabolic engineering of the oleaginous yeastYarrowia lipolyticaand extracellular bioreaction engineering provides efficient bioconversion of plant oils/animal fats into high‐value products. However, predicting the hydrodynamics and mass transfer parameters is difficult due to the high agitation and sparging required to create dispersed oil droplets in an aqueous medium for efficient yeast fermentation. In the current study, commercial computational fluid dynamic (CFD) solver Ansys CFX coupled with the MUSIG model first predicts two‐phase system (oil/water and air/water) mixing dynamics and their particle size distributions. Then, a three‐phase model (oil, air, and water) utilizing dispersed air bubbles and a polydispersed oil phase was implemented to explore fermenter mixing, gas dispersion efficiency, and volumetric mass transfer coefficient estimations (kLa). The study analyzed the effect of the impeller type, agitation speed, and power input on the tank's flow field and revealed that upward‐pumping pitched blade impellers (PBI) in the top two positions (compared to Rushton‐type) provided advantageous oil phase homogeneity and similar estimatedkLavalues with reduced power. These results show good agreement with the experimental mixing andkLadata. 
    more » « less
  5. Taylor–Couette (TC) flow, the flow between two independently rotating and co-axial cylinders, is commonly used as a canonical model for shear flows. Unlike plane Couette flow, pinned secondary flows can be found in TC flow. These are known as Taylor rolls and drastically affect the flow behaviour. We study the possibility of modifying these secondary structures using patterns of stress-free and no-slip boundary conditions on the inner cylinder. For this, we perform direct numerical simulations of narrow-gap TC flow with pure inner-cylinder rotation at four different shear Reynolds numbers up to $$Re_s=3\times 10^4$$ . We find that one-dimensional azimuthal patterns do not have a significant effect on the flow topology, and that the resulting torque is a large fraction ( $$\sim$$ 80 %–90 %) of torque in the fully no-slip case. One-dimensional axial patterns decrease the torque more, and for certain pattern frequency disrupt the rolls by interfering with the existing Reynolds stresses that generate secondary structures. For $$Re\geq 10^4$$ , this disruption leads to a smaller torque than what would be expected from simple boundary layer effects and the resulting effective slip length and slip velocity. We find that two-dimensional checkerboard patterns have similar behaviour to azimuthal patterns and do not affect the flow or the torque substantially, but two-dimensional spiral inhomogeneities can move around the pinned secondary flows as they induce persistent axial velocities. We quantify the roll's movement for various angles and the widths of the spiral pattern, and find a non-monotonic behaviour as a function of pattern angle and pattern frequency. 
    more » « less