skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Applications of Dynamic Land Surface Information for Passive Microwave Precipitation Retrieval
Abstract Accurate, physically based precipitation retrieval over global land surfaces is an important goal of the NASA/JAXA Global Precipitation Measurement Mission (GPM). This is a difficult problem for the passive microwave constellation, as the signal over radiometrically warm land surfaces in the microwave frequencies means that the measurements used are indirect and typically require inferring some type of relationship between an observed scattering signal and precipitation at the surface. GPM, with collocated radiometer and dual-frequency radar, is an excellent tool for tackling this problem and improving global retrievals. In the years following the launch of the GPM Core Observatory satellite, physically based passive microwave retrieval of precipitation over land continues to be challenging. Validation efforts suggest that the operational GPM passive microwave algorithm, the Goddard profiling algorithm (GPROF), tends to overestimate precipitation at the low (<5 mm h −1 ) end of the distribution over land. In this work, retrieval sensitivities to dynamic surface conditions are explored through enhancement of the algorithm with dynamic, retrieved information from a GPM-derived optimal estimation scheme. The retrieved parameters describing surface and background characteristics replace current static or ancillary GPROF information including emissivity, water vapor, and snow cover. Results show that adding this information decreases probability of false detection by 50% and, most importantly, the enhancements with retrieved parameters move the retrieval away from dependence on ancillary datasets and lead to improved physical consistency.  more » « less
Award ID(s):
1928724
PAR ID:
10225963
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
38
Issue:
2
ISSN:
0739-0572
Page Range / eLocation ID:
167 to 180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This study focuses on the ability of the Global Precipitation Measurement (GPM) passive microwave sensors to detect and provide quantitative precipitation estimates (QPE) for extreme lake-effect snowfall events over the U.S. lower Great Lakes region. GPM Microwave Imager (GMI) high-frequency channels can clearly detect intense shallow convective snowfall events. However, GMI Goddard Profiling (GPROF) QPE retrievals produce inconsistent results when compared with the Multi-Radar Multi-Sensor (MRMS) ground-based radar reference dataset. While GPROF retrievals adequately capture intense snowfall rates and spatial patterns of one event, GPROF systematically underestimates intense snowfall rates in another event. Furthermore, GPROF produces abundant light snowfall rates that do not accord with MRMS observations. Ad hoc precipitation-rate thresholds are suggested to partially mitigate GPROF’s overproduction of light snowfall rates. The sensitivity and retrieval efficiency of GPROF to key parameters (2-m temperature, total precipitable water, and background surface type) used to constrain the GPROF a priori retrieval database are investigated. Results demonstrate that typical lake-effect snow environmental and surface conditions, especially coastal surfaces, are underpopulated in the database and adversely affect GPROF retrievals. For the two presented case studies, using a snow-cover a priori database in the locations originally deemed as coastline improves retrieval. This study suggests that it is particularly important to have more accurate GPROF surface classifications and better representativeness of the a priori databases to improve intense lake-effect snow detection and retrieval performance. 
    more » « less
  2. null (Ed.)
    Abstract Precipitation estimation based on passive microwave (MW) observations from low-Earth-orbiting satellites is one of the essential variables for understanding the global climate. However, almost all validation studies for such precipitation estimation have focused only on the surface precipitation rate. This study investigates the vertical precipitation profiles estimated by two passive MW-based retrieval algorithms, i.e., the emissivity principal components (EPC) algorithm and the Goddard profiling algorithm (GPROF). The passive MW-based condensed water content profiles estimated from the Global Precipitation Measurement Microwave Imager (GMI) are validated using the GMI + Dual-Frequency Precipitation Radar combined algorithm as the reference product. It is shown that the EPC generally underestimates the magnitude of the condensed water content profiles, described by the mean condensed water content, by about 20%–50% in the middle-to-high latitudes, while GPROF overestimates it by about 20%–50% in the middle-to-high latitudes and more than 50% in the tropics. Part of the EPC magnitude biases is associated with the representation of the precipitation type (i.e., convective and stratiform) in the retrieval algorithm. This suggests that a separate technique for precipitation type identification would aid in mitigating these biases. In contrast to the magnitude of the profile, the profile shapes are relatively well represented by these two passive MW-based retrievals. The joint analysis between the estimation performances of the vertical profiles and surface precipitation rate shows that the physically reasonable connections between the surface precipitation rate and the associated vertical profiles are achieved to some extent by the passive MW-based algorithms. 
    more » « less
  3. Abstract Observations of clouds and precipitation in the microwave domain from the active dual-frequency precipitation radar (DPR) and the passive Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the GPMCore Observatorysatellite are used in synergy with cloud tracking information derived from infrared imagery from theGOES-13andMeteosat-7geostationary satellites for analysis of the life cycle of precipitating cloud systems, in terms of temporal evolution of their macrophysical characteristics, in several oceanic and continental regions of the tropics. The life cycle of each one of the several hundred thousand cloud systems tracked during the 2-yr (2015–16) analysis period is divided into five equal-duration stages between initiation and dissipation. The average cloud size, precipitation intensity, precipitation top height, and convective and stratiform precipitating fractions are documented at each stage of the life cycle for different cloud categories (based upon lifetime duration). The average life cycle dynamics is found remarkably homogeneous across the different regions and is consistent with previous studies: systems peak in size around midlife; precipitation intensity and convective fraction tend to decrease continuously from the initiation stage to the dissipation. Over the three continental regions, Amazonia (AMZ), central Africa (CAF), and Sahel (SAH), at the early stages of clouds’ life cycle, precipitation estimates from the passive GMI instrument are systematically found to be 15%–40% lower than active radar estimates. By highlighting stage-dependent biases in state-of-the-art passive microwave precipitation estimates over land, we demonstrate the potential usefulness of cloud tracking information for improving retrievals and suggest new directions for the synergistic use of geostationary and low-Earth-orbiting satellite observations. 
    more » « less
  4. We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products. 
    more » « less
  5. Abstract The quantitative estimation of precipitation from orbiting passive microwave imagers has been performed for more than 30 years. The development of retrieval methods consists of establishing physical or statistical relationships between the brightness temperatures (TBs) measured at frequencies between 5 and 200 GHz and precipitation. Until now, these relationships have essentially been established at the “pixel” level, associating the average precipitation rate inside a predefined area (the pixel) to the collocated multispectral radiometric measurement. This approach considers each pixel as an independent realization of a process and ignores the fact that precipitation is a dynamic variable with rich multiscale spatial and temporal organization. Here we propose to look beyond the pixel values of the TBs and show that useful information for precipitation retrieval can be derived from the variations of the observed TBs in a spatial neighborhood around the pixel of interest. We also show that considering neighboring information allows us to better handle the complex observation geometry of conical-scanning microwave imagers, involving frequency-dependent beamwidths, overlapping fields of view, and large Earth incidence angles. Using spatial convolution filters, we compute “nonlocal” radiometric parameters sensitive to spatial patterns and scale-dependent structures of the TB fields, which are the “geometric signatures” of specific precipitation structures such as convective cells. We demonstrate that using nonlocal radiometric parameters to enrich the spectral information associated to each pixel allows for reduced retrieval uncertainty (reduction of 6%–11% of the mean absolute retrieval error) in a simple k-nearest neighbors retrieval scheme. 
    more » « less