Abstract Monthly and daily gridded precipitation datasets are one of the most demanded products in climatology and hydrology. These datasets describe the high spatial and temporal variability of precipitation as a continuous surface and for defined periods. However, due to the complex characteristics of precipitation, it is difficult to obtain accurate estimations. Thus, the creation of a gridded dataset from observations requires the comprehensive and precise application of quality control, reconstruction, and gridding procedures. Yet, despite multiple advances, most of the gridded datasets created and published since the mid‐1990s to the present use a wide variety of techniques, methods, and outputs, which can completely change the final representativity of the data. It is, therefore, critical to provide general guidelines for the development of future and more robust gridded datasets based on the data characteristics, geographical factors, and advanced statistical techniques. We identified gaps and challenges for near‐future perspectives and provide guidelines for implementing improved approaches based on the performance of 48 products. Finally, we concluded that, despite better spatial and temporal resolutions, data access, and data processing capabilities, observational coverage remains a challenge. Moreover, scientists should adopt tailored strategies to improve the representativity and uncertainty of the estimates. This article is categorized under:Science of Water > Hydrological ProcessesScience of Water > Water ExtremesScience of Water > Methods
more »
« less
Assessment of Extremes in Global Precipitation Products: How Reliable Are They?
Abstract Global gridded precipitation products have proven essential for many applications ranging from hydrological modeling and climate model validation to natural hazard risk assessment. They provide a global picture of how precipitation varies across time and space, specifically in regions where ground-based observations are scarce. While the application of global precipitation products has become widespread, there is limited knowledge on how well these products represent the magnitude and frequency of extreme precipitation—the key features in triggering flood hazards. Here, five global precipitation datasets (MSWEP, CFSR, CPC, PERSIANN-CDR, and WFDEI) are compared to each other and to surface observations. The spatial variability of relatively high precipitation events (tail heaviness) and the resulting discrepancy among datasets in the predicted precipitation return levels were evaluated for the time period 1979–2017. The analysis shows that 1) these products do not provide a consistent representation of the behavior of extremes as quantified by the tail heaviness, 2) there is strong spatial variability in the tail index, 3) the spatial patterns of the tail heaviness generally match the Köppen–Geiger climate classification, and 4) the predicted return levels for 100 and 1000 years differ significantly among the gridded products. More generally, our findings reveal shortcomings of global precipitation products in representing extremes and highlight that there is no single global product that performs best for all regions and climates.
more »
« less
- Award ID(s):
- 1928724
- PAR ID:
- 10225972
- Date Published:
- Journal Name:
- Journal of Hydrometeorology
- Volume:
- 21
- Issue:
- 12
- ISSN:
- 1525-755X
- Page Range / eLocation ID:
- 2855 to 2873
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tropical highland environments present substantial challenges for climate projections due to sparse observations, significant local heterogeneity and inconsistent performance of global climate models (GCMs). Moreover, these areas are often densely populated, with agriculture‐based livelihoods sensitive to transient climate extremes not always included in available climate projections. In this context, we present an analysis of observed and projected trends in temperature and precipitation extremes across agroecosystems (AESs) in the northwest Ethiopian Highlands, to provide more relevant information for adaptation. Limited observational networks are supplemented with a satellite‐station hybrid product, and trends are calculated locally and summarized at the adaptation‐relevant unit of the AES. Projections are then presented from GCM realizations with divergent climate projections, and results are interpreted in the context of agricultural climate sensitivities. Trends in temperature extremes (1981–2016) are typically consistent across sites and AES, but with different implications for agricultural activities in the other AES. Trends in temperature extremes from GCM projected data also generally have the same sign as the observed trends. For precipitation extremes, there is greater site‐to‐site variability. Summarized by AES, however, there is a clear tendency towards reduced precipitation, associated with decreases in wet extremes and a tendency towards temporally clustered wet and dry days. Over the retrospective analysis period, neither of the two analysed GCMs captures these trends. Future projections from both GCMs include significant wetting and an increase in precipitation extremes across AES. However, given the lack of agreement between GCMs and observations with respect to trends in recent decades, the reliability of these projections is questionable. The present study is consistent with the “East Africa Paradox” that observations show drying in summer season rainfall while GCMs project wetting. This has an expression in summertime Ethiopian rain that has not received significant attention in previous studies.more » « less
-
Extreme precipitation events are expected to increase in magnitude in response to global warming, but the magnitude of the forced response may vary considerably across distances of ~ 100 km or less. To examine the spatial variability of extreme precipitation and its sensitivity to global warming with high statistical certainty, we use a large (16,980 years), initial-condition ensemble of dynamically downscaled global climate model simulations. Under approximately 2 °C of global warming above a recent baseline period, we find large variability in the change (0 to > 60%) of the magnitude of very rare events (from 10 to 1000-year return period values of annual maxima of daily precipitation) across the western United States. Western (and predominantly windward) slopes of coastal ranges, the Cascades, and the Sierra Nevada typically show smaller increases in extreme precipitation than eastern slopes and bordering valleys and plateaus, but this pattern is less evident in the continental interior. Using the generalized extreme value shape parameter to characterize the tail of the precipitation distribution (light to heavy tail), we find that heavy tails dominate across the study region, but light tails are common on the western slopes of mountain ranges. The majority of the region shows a tendency toward heavier tails under warming, though some regions, such as plateaus of eastern Oregon and Washington, and the crest of the Sierra Nevada, show a lightening of tails. Spatially, changes in long return-period precipitation amounts appear to partially result from changes in the shape of the tail of the distribution.more » « less
-
Accurate prediction of precipitation intensity is crucial for both human and natural systems, especially in a warming climate more prone to extreme precipitation. Yet, climate models fail to accurately predict precipitation intensity, particularly extremes. One missing piece of information in traditional climate model parameterizations is subgrid-scale cloud structure and organization, which affects precipitation intensity and stochasticity at coarse resolution. Here, using global storm-resolving simulations and machine learning, we show that, by implicitly learning subgrid organization, we can accurately predict precipitation variability and stochasticity with a low-dimensional set of latent variables. Using a neural network to parameterize coarse-grained precipitation, we find that the overall behavior of precipitation is reasonably predictable using large-scale quantities only; however, the neural network cannot predict the variability of precipitation ( R 2 ∼ 0.45) and underestimates precipitation extremes. The performance is significantly improved when the network is informed by our organization metric, correctly predicting precipitation extremes and spatial variability ( R 2 ∼ 0.9). The organization metric is implicitly learned by training the algorithm on a high-resolution precipitable water field, encoding the degree of subgrid organization. The organization metric shows large hysteresis, emphasizing the role of memory created by subgrid-scale structures. We demonstrate that this organization metric can be predicted as a simple memory process from information available at the previous time steps. These findings stress the role of organization and memory in accurate prediction of precipitation intensity and extremes and the necessity of parameterizing subgrid-scale convective organization in climate models to better project future changes of water cycle and extremes.more » « less
-
Abstract Instrumental observations indicate that Amazon precipitation and streamflow extremes have increased during the last 40 years, possibly due to anthropogenic changes and natural variability. How unprecedented these changes might be is difficult to determine because some paleoclimatic, instrumental, and climate model simulations suggest that Amazonian precipitation and streamflow may be subject to multidecadal variability with return intervals longer than most direct observations. A new 258‐yearlong tree‐ring chronology ofCedrela odoratahas been developed in the eastern Amazon and has been used to reconstruct wet season precipitation totals from 1759–2016. Reconstructed drought extremes are associated with significant sea surface temperature anomalies over the tropical Pacific and Atlantic Oceans. Strong multidecadal variance is identified in the reconstruction that may reflect a component of natural rainfall variability relevant to forest ecosystem dynamics and suggesting that recent hydroclimate changes over the eastern Amazon may not be unprecedented over the past 258 years.more » « less