Abstract Satellite precipitation products, as all quantitative estimates, come with some inherent degree of uncertainty. To associate a quantitative value of the uncertainty to each individual estimate, error modeling is necessary. Most of the error models proposed so far compute the uncertainty as a function of precipitation intensity only, and only at one specific spatiotemporal scale. We propose a spectral error model that accounts for the neighboring space–time dynamics of precipitation into the uncertainty quantification. Systematic distortions of the precipitation signal and random errors are characterized distinctively in every frequency–wavenumber band in the Fourier domain, to accurately characterize error across scales. The systematic distortions are represented as a deterministic space–time linear filtering term. The random errors are represented as a nonstationary additive noise. The spectral error model is applied to the IMERG multisatellite precipitation product, and its parameters are estimated empirically through a system identification approach using the GV-MRMS gauge–radar measurements as reference (“truth”) over the eastern United States. The filtering term is found to be essentially low-pass (attenuating the fine-scale variability). While traditional error models attribute most of the error variance to random errors, it is found here that the systematic filtering term explains 48% of the error variance at the native resolution of IMERG. This fact confirms that, at high resolution, filtering effects in satellite precipitation products cannot be ignored, and that the error cannot be represented as a purely random additive or multiplicative term. An important consequence is that precipitation estimates derived from different sources shall not be expected to automatically have statistically independent errors. Significance StatementSatellite precipitation products are nowadays widely used for climate and environmental research, water management, risk analysis, and decision support at the local, regional, and global scales. For all these applications, knowledge about the accuracy of the products is critical for their usability. However, products are not systematically provided with a quantitative measure of the uncertainty associated with each individual estimate. Various parametric error models have been proposed for uncertainty quantification, mostly assuming that the uncertainty is only a function of the precipitation intensity at the pixel and time of interest. By projecting satellite precipitation fields and their retrieval errors into the Fourier frequency–wavenumber domain, we show that we can explicitly take into account the neighboring space–time multiscale dynamics of precipitation and compute a scale-dependent uncertainty.
more »
« less
How well do multi-satellite products capture the space-time dynamics of precipitation? Part I: five products assessed via a wavenumber-frequency decomposition
Abstract As more global satellite-derived precipitation products become available, it is imperative to evaluate them more carefully for providing guidance as to how well precipitation space-time features are captured for use in hydrologic modeling, climate studies and other applications. Here we propose a space-time Fourier spectral analysis and define a suite of metrics which evaluate the spatial organization of storm systems, the propagation speed and direction of precipitation features, and the space-time scales at which a satellite product reproduces the variability of a reference “ground-truth” product (“effective resolution”). We demonstrate how the methodology relates to our physical intuition using the case study of a storm system with rich space-time structure. We then evaluate five high-resolution multi-satellite products (CMORPH, GSMaP, IMERG-early, IMERG-final and PERSIANN-CCS) over a period of two years over the southeastern US. All five satellite products show generally consistent space-time power spectral density when compared to a reference ground gauge-radar dataset (GV-MRMS), revealing agreement in terms of average morphology and dynamics of precipitation systems. However, a deficit of spectral power at wavelengths shorter than 200 km and periods shorter than 4 h reveals that all satellite products are excessively “smooth”. The products also show low levels of spectral coherence with the gauge-radar reference at these fine scales, revealing discrepancies in capturing the location and timing of precipitation features. From the space-time spectral coherence, the IMERG-final product shows superior ability in resolving the space-time dynamics of precipitation down to 200 km and 4 h scales compared to the other products.
more »
« less
- PAR ID:
- 10319093
- Date Published:
- Journal Name:
- Journal of Hydrometeorology
- ISSN:
- 1525-755X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the nature and origin of errors in satellite precipitation products is important for applications and product improvement. Here we propose a new error decomposition scheme incorporating precipitation event (continuous rainy periods) information to characterize satellite errors. Under this framework, the errors are attributed to the inaccuracies in event occurrence, timing (event start/end time), and intensity. The Integrated MultisatellitE Retrieval for Global Precipitation Measurement (IMERG) is used as our test product to apply the method over CONUS. The above‐listed factors contribute approximately 30%, 20%, and 50% to the total bias, respectively. Significant asymmetry exists in the temporal distribution of biases throughout events: early event endings cause threefold more precipitation amount bias than late event beginnings, while early event beginnings cause fourfold more bias than late event endings. Dominant contributors vary across seasons and regions. The proposed error decomposition provides insight into sources of error for improved retrievals.more » « less
-
null (Ed.)Abstract The Global Precipitation Measurement (GPM) constellation of spaceborne sensors provides a variety of direct and indirect measurements of precipitation processes. Such observations can be employed to derive spatially and temporally consistent gridded precipitation estimates either via data-driven retrieval algorithms or by assimilation into physically based numerical weather models. We compare the data-driven Integrated Multisatellite Retrievals for GPM (IMERG) and the assimilation-enabled NASA-Unified Weather Research and Forecasting (NU-WRF) model against Stage IV reference precipitation for four major extreme rainfall events in the southeastern United States using an object-based analysis framework that decomposes gridded precipitation fields into storm objects. As an alternative to conventional “grid-by-grid analysis,” the object-based approach provides a promising way to diagnose spatial properties of storms, trace them through space and time, and connect their accuracy to storm types and input data sources. The evolution of two tropical cyclones are generally captured by IMERG and NU-WRF, while the less organized spatial patterns of two mesoscale convective systems pose challenges for both. NU-WRF rain rates are generally more accurate, while IMERG better captures storm location and shape. Both show higher skill in detecting large, intense storms compared to smaller, weaker storms. IMERG’s accuracy depends on the input microwave and infrared data sources; NU-WRF does not appear to exhibit this dependence. Findings highlight that an object-oriented view can provide deeper insights into satellite precipitation performance and that the satellite precipitation community should further explore the potential for “hybrid” data-driven and physics-driven estimates in order to make optimal usage of satellite observations.more » « less
-
Abstract The diurnal cycle of precipitation plays a crucial role in regulating Earth's water cycle, energy balance, and regional climate patterns. However, the diurnal precipitation across mainland Southeast Asia (MSEA) and the factors influencing its spatial variations are not fully understood. In this study, we investigated diurnal precipitation patterns in summertime (June–August) from 2002 to 2005 over MSEA using ground‐based observations, satellite products, the global ERA5 reanalysis, and high‐resolution simulations from the Weather Research and Forecasting (WRF) Model at 9‐ and 3‐km grid spacing forced by ERA5 hourly data on ∼0.25° grids. Various observation‐based data sets including GHCN‐Daily, Multi‐Source Weighted‐Ensemble Precipitation (MSWEP), Asian Precipitation ‐ Highly‐Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), and Integrated Multi‐satellite Retrievals for Global Precipitation Measurement (IMERG) were used. In evaluating daily precipitation over MSEA, MSWEP, and APHRODITE data sets show similar patterns in precipitation amount, frequency, and intensity, while IMERG tends to produce higher amounts but with less frequency. ERA5 overestimates light precipitation compared to the other data sets. The WRF simulations generally produce heavier but less frequent light precipitation, with the 3‐km simulation producing less intense precipitation than the 9‐km simulation. A k‐means classification of IMERG data revealed five distinct spatial regimes with varying diurnal precipitation cycles. The WRF simulations closely match these regimes, capturing key diurnal cycles missed by ERA5 over mountainous regions and coastlines. Additionally, convective activities and near‐surface winds influence these cycles, with WRF simulations better representing coastal and mountain precipitation patterns than ERA5. High‐resolution WRF simulations, especially the 3‐km simulation, capture diurnal precipitation more accurately than ERA5, highlighting the importance of employing convection‐permitting models to simulate precipitation diurnal cycles over complex terrain.more » « less
-
null (Ed.)Abstract Many existing models that predict landslide hazards utilize ground-based sources of precipitation data. In locations where ground-based precipitation observations are limited (i.e., a vast majority of the globe), or for landslide hazard models that assess regional or global domains, satellite multisensor precipitation products offer a promising near-real-time alternative to ground-based data. NASA’s global Landslide Hazard Assessment for Situational Awareness (LHASA) model uses the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) product to issue hazard “nowcasts” in near–real time for areas that are currently at risk for landsliding. Satellite-based precipitation estimates, however, can contain considerable systematic bias and random error, especially over mountainous terrain and during extreme rainfall events. This study combines a precipitation error modeling framework with a probabilistic adaptation of LHASA. Compared with the routine version of LHASA, this probabilistic version correctly predicts more of the observed landslides in the study region with fewer false alarms by high hazard nowcasts. This study demonstrates that improvements in landslide hazard prediction can be achieved regardless of whether the IMERG error model is trained using abundant ground-based precipitation observations or using far fewer and more scattered observations, suggesting that the approach is viable in data-limited regions. Results emphasize the importance of accounting for both random error and systematic satellite precipitation bias. The approach provides an example of how environmental prediction models can incorporate satellite precipitation uncertainty. Other applications such as flood and drought monitoring and forecasting could likely benefit from consideration of precipitation uncertainty.more » « less
An official website of the United States government

