skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Propagation of Satellite Precipitation Estimation Errors: From Passive Microwave to Infrared Estimates
ABSTRACT The launch of NOAA’s latest generation of geostationary satellites known as the Geostationary Operational Environmental Satellite (GOES)-R Series has opened new opportunities in quantifying precipitation rates. Recent efforts have strived to utilize these data to improve space-based precipitation retrievals. The overall objective of the present work is to carry out a detailed error budget analysis of the improved Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR) algorithm for GOES-R and the passive microwave (MW) combined (MWCOMB) precipitation dataset used to calibrate it with an aim to provide insights regarding strengths and weaknesses of these products. This study systematically analyzes the errors across different climate regions and also as a function of different precipitation types over the conterminous United States. The reference precipitation dataset is Ground-Validation Multi-Radar Multi-Sensor (GV-MRMS). Overall, MWCOMB reveals smaller errors as compared to SCaMPR. However, the analysis indicated that that the major portion of error in SCaMPR is propagated from the MWCOMB calibration data. The major challenge starts with poor detection from MWCOMB, which propagates in SCaMPR. In particular, MWCOMB misses 90% of cool stratiform precipitation and the overall detection score is around 40%. The ability of the algorithms to quantify precipitation amounts for the Warm Stratiform, Cool Stratiform, and Tropical/Stratiform Mix categories is poor compared to the Convective and Tropical/Convective Mix categories with additional challenges in complex terrain regions. Further analysis showed strong similarities in systematic and random error models with both products. This suggests that the potential of high-resolution GOES-R observations remains underutilized in SCaMPR due to the errors from the calibrator MWCOMB.  more » « less
Award ID(s):
1928724
PAR ID:
10225977
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
21
Issue:
6
ISSN:
1525-755X
Page Range / eLocation ID:
1367 to 1381
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Observations of clouds and precipitation in the microwave domain from the active dual-frequency precipitation radar (DPR) and the passive Global Precipitation Measurement (GPM) Microwave Imager (GMI) onboard the GPMCore Observatorysatellite are used in synergy with cloud tracking information derived from infrared imagery from theGOES-13andMeteosat-7geostationary satellites for analysis of the life cycle of precipitating cloud systems, in terms of temporal evolution of their macrophysical characteristics, in several oceanic and continental regions of the tropics. The life cycle of each one of the several hundred thousand cloud systems tracked during the 2-yr (2015–16) analysis period is divided into five equal-duration stages between initiation and dissipation. The average cloud size, precipitation intensity, precipitation top height, and convective and stratiform precipitating fractions are documented at each stage of the life cycle for different cloud categories (based upon lifetime duration). The average life cycle dynamics is found remarkably homogeneous across the different regions and is consistent with previous studies: systems peak in size around midlife; precipitation intensity and convective fraction tend to decrease continuously from the initiation stage to the dissipation. Over the three continental regions, Amazonia (AMZ), central Africa (CAF), and Sahel (SAH), at the early stages of clouds’ life cycle, precipitation estimates from the passive GMI instrument are systematically found to be 15%–40% lower than active radar estimates. By highlighting stage-dependent biases in state-of-the-art passive microwave precipitation estimates over land, we demonstrate the potential usefulness of cloud tracking information for improving retrievals and suggest new directions for the synergistic use of geostationary and low-Earth-orbiting satellite observations. 
    more » « less
  2. Abstract. An ability to accurately detect convective regions isessential for initializing models for short-term precipitation forecasts.Radar data are commonly used to detect convection, but radars that providehigh-temporal-resolution data are mostly available over land, and the qualityof the data tends to degrade over mountainous regions. On the other hand,geostationary satellite data are available nearly anywhere and in near-realtime. Current operational geostationary satellites, the GeostationaryOperational Environmental Satellite-16 (GOES-16) and Satellite-17, provide high-spatial- and high-temporal-resolution data but only of cloud top properties; 1 min data, however, allow us to observe convection from visible andinfrared data even without vertical information of the convective system.Existing detection algorithms using visible and infrared data look forstatic features of convective clouds such as overshooting top or lumpy cloudtop surface or cloud growth that occurs over periods of 30 min to anhour. This study represents a proof of concept that artificial intelligence(AI) is able, when given high-spatial- and high-temporal-resolution data fromGOES-16, to learn physical properties of convective clouds and automate thedetection process. A neural network model with convolutional layers is proposed to identifyconvection from the high-temporal resolution GOES-16 data. The model takesfive temporal images from channel 2 (0.65 µm) and 14 (11.2 µm) asinputs and produces a map of convective regions. In order to provideproducts comparable to the radar products, it is trained against Multi-RadarMulti-Sensor (MRMS), which is a radar-based product that uses a rathersophisticated method to classify precipitation types. Two channels fromGOES-16, each related to cloud optical depth (channel 2) and cloud topheight (channel 14), are expected to best represent features of convectiveclouds: high reflectance, lumpy cloud top surface, and low cloud toptemperature. The model has correctly learned those features of convectiveclouds and resulted in a reasonably low false alarm ratio (FAR) and highprobability of detection (POD). However, FAR and POD can vary depending onthe threshold, and a proper threshold needs to be chosen based on thepurpose. 
    more » « less
  3. Satellite sensors have been widely used for precipitation retrieval, and a number of precipitation retrieval algorithms have been developed using observations from various satellite sensors. The current operational rainfall rate quantitative precipitation estimate (RRQPE) product from the geostationary operational environmental satellite (GOES) offers full disk rainfall rate estimates based on the observations from the advanced baseline imager (ABI) aboard the GOES-R series. However, accurate precipitation retrieval using satellite sensors is still challenging due to the limitations on spatio-temporal sampling of the satellite sensors and/or the uncertainty associated with the applied parametric retrieval algorithms. In this article, we propose a deep learning framework for precipitation retrieval using the combined observations from the ABI and geostationary lightning mapper (GLM) on the GOES-R series to improve the current operational RRQPE product. Particularly, the proposed deep learning framework is composed of two deep convolutional neural networks (CNNs) that are designed for precipitation detection and quantification. The cloud-top brightness temperature from multiple ABI channels and the lightning flash rate from the GLM measurement are used as inputs to the deep learning framework. To train the designed CNNs, the precipitation product multiradar multi-sensor (MRMS) system from the National Oceanic and Atmospheric Administration (NOAA) is used as target labels to optimize the network parameters. The experimental results show that the precipitation retrieval performance of the proposed framework is superior to the currently operational GOES RRQPE product in the selected study domain, and the performance is dramatically enhanced after incorporating the lightning data into the deep learning model. Using the independent MRMS product as a reference, the deep learning model can reduce the retrieval uncertainty in the operational RRQPE product by at least 31% in terms of the mean squared error and normalized mean absolute error, and the improvement is more significant in moderate to heavy rain regions. Therefore, the proposed deep learning framework can potentially serve as an alternative approach for GOES precipitation retrievals. 
    more » « less
  4. Abstract The Echo Classification from COnvectivity (ECCO) algorithm identifies convective and stratiform types of radar echo in three dimensions. It is based on the calculation of reflectivity texture—a combination of the intensity and the heterogeneity of the radar echoes on each horizontal plane in a 3D Cartesian volume. Reflectivity texture is translated into convectivity, which is designed to be a quantitative measure of the convective nature of each 3D radar grid point. It ranges from 0 (100% stratiform) to 1 (100% convective). By thresholding convectivity, a more traditional qualitative categorization is obtained, which classifies radar echoes as convective, mixed, or stratiform. In contrast to previous algorithms, these echo-type classifications are provided on the full 3D grid of the reflectivity field. The vertically resolved classifications, in combination with temperature data, allow for subclassifications into shallow, mid-, deep, and elevated convective features, and low, mid-, and high stratiform regions—again in three dimensions. The algorithm was validated using datasets collected over the U.S. Great Plains during the PECAN field campaign. An analysis of lightning counts shows ∼90% of lightning occurring in regions classified as convective by ECCO. A statistical comparison of ECCO echo types with the well-established GPM radar precipitation-type categories show 84% (88%) of GPM stratiform (convective) echo being classified as stratiform (convective) or mixed by ECCO. ECCO was applied to radar grids for the continental United States, the United Arab Emirates, Australia, and Europe, illustrating its robustness and adaptability to different radar grid characteristics and climatic regions. 
    more » « less
  5. Abstract High temporal and spatial resolution precipitation datasets are essential for hydrological and flood modeling to assist water resource management and emergency responses, particularly for small watersheds, such as those in Hawai‘i in the United States. Unfortunately, fine temporal (subdaily) and spatial (<1 km) resolutions of rainfall datasets are not always readily available for applications. Radar provides indirect measurements of the rain rate over a large spatial extent with a reasonable temporal resolution, while rain gauges provide “ground truth.” There are potential advantages to combining the two, which have not been fully explored in tropical islands. In this study, we applied kriging with external drift (KED) to integrate hourly gauge and radar rainfall into a 250 m × 250 m gridded dataset for the tropical island of O‘ahu. The results were validated with leave-one-out cross validation for 18 severe storm events, including five different storm types (e.g., tropical cyclone, cold front, upper-level trough, kona low, and a mix of upper-level trough and kona low), and different rainfall structures (e.g., stratiform and convective). KED-merged rainfall estimates outperformed both the radar-only and gauge-only datasets by 1) reducing the error from radar rainfall and 2) improving the underestimation issues from gauge rainfall, especially during convective rainfall. We confirmed the KED method can be used to merge radar with gauge data to generate reliable rainfall estimates, particularly for storm events, on mountainous tropical islands. In addition, KED rainfall estimates were consistently more accurate in depicting spatial distribution and maximum rainfall value within various storm types and rainfall structures. Significance StatementThe results of this study show the effectiveness of utilizing kriging with external drift (KED) in merging gauge and radar rainfall data to produce highly accurate, reliable rainfall estimates in mountainous tropical regions, such as O‘ahu. The validated KED dataset, with its high temporal and spatial resolutions, offers a valuable resource for various types of rainfall-related research, particularly for extreme weather response and rainfall intensity analyses in Hawai’i. Our findings improve the accuracy of rainfall estimates and contribute to a deeper understanding of the performance of various rainfall estimation methods under different storm types and rainfall structures in a mountainous tropical setting. 
    more » « less