skip to main content

Search for: All records

Award ID contains: 1808239

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Side‐arm hydrogenation (SAH) by homogeneous catalysis has extended the reach of the parahydrogen enhanced NMR technique to key metabolites such as pyruvate. However, homogeneous hydrogenation requires rapid separation of the dissolved catalyst and purification of the hyperpolarised species with a purity sufficient for safe in‐vivo use. An alternate approach is to employ heterogeneous hydrogenation in a continuous‐flow reactor, where separation from the solid catalysts is straightforward. Using a TiO2‐nanorod supported Rh catalyst, we demonstrate continuous‐flow parahydrogen enhanced NMR by heterogeneous hydrogenation of a model SAH precursor, propargyl acetate, at a flow rate of 1.5 mL/min. Parahydrogen gas was introduced into the flowing solution phase using a novel tube‐in‐tube membrane dissolution device. Without much optimization, proton NMR signal enhancements of up to 297 (relative to the thermal equilibrium signals) at 9.4 Tesla were shown to be feasible on allyl‐acetate at a continuous total yield of 33 %. The results are compared to those obtained with the standard batch‐mode technique of parahydrogen bubbling through a suspension of the same catalyst.

    more » « less
  2. Abstract

    Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd‐based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3Sn2phase. Instead, using a thermal quenching method, we prepared a pure‐phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,β‐unsaturated aldehydes, highest in reported Pd‐based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn‐ to Pd3Sn2‐structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity.

    more » « less
  3. null (Ed.)
  4. The molecular basis for the high cis -alkene selectivity over intermetallic PtSn for alkyne semi-hydrogenation is demonstrated. Unlike the universal assumption that the bimetallic surface is saturated with atomic hydrogen, molecular hydrogen has a higher barrier for dissociative adsorption on intermetallic PtSn due to the deficiency of Pt three-fold sites. The resulting molecular behavior of adsorbed hydrogen on intermetallic PtSn nanoparticles leads to pairwise-hydrogenation of three alkynes to the corresponding cis -alkenes, satisfying both high stereoselectivity and high chemoselectivity. 
    more » « less