Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ for$$j=1,\dots ,m$$ with coefficients$$a_{j,i}\in \mathbb {F}_p$$ . Suppose that$$k\ge 3m$$ , that$$a_{j,1}+\dots +a_{j,k}=0$$ for$$j=1,\dots ,m$$ and that every$$m\times m$$ minor of the$$m\times k$$ matrix$$(a_{j,i})_{j,i}$$ is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ of size$$|A|> C\cdot \Gamma ^n$$ contains a solution$$(x_1,\dots ,x_k)\in A^k$$ to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ are all distinct. Here,Cand$$\Gamma $$ are constants only depending onp,mandksuch that$$\Gamma . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ in the solution$$(x_1,\dots ,x_k)\in A^k$$ to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.
more »
« less
Asymptotic Errors in the Superconvergence of Discontinuous Galerkin Methods Based on Upwind-Biased Fluxes for 1D Linear Hyperbolic Equations
Abstract In this paper, we study the superconvergence of the semi-discrete discontinuous Galerkin (DG) method for linear hyperbolic equations in one spatial dimension. The asymptotic errors in cell averages, downwind point values, and the postprocessed solution are derived for the initial discretization by Gaussian projection (for periodic boundary condition) or Cao projection Cao et al. (SIAM J. Numer. Anal.5, 2555–2573 (2014)) (for Dirichlet boundary condition). We proved that the error constant in the superconvergence of order$$2k+1$$ for DG methods based on upwind-biased fluxes depends on the parity of the orderk. The asymptotic errors are demonstrated by various numerical experiments for scalar and vector hyperbolic equations.
more »
« less
- Award ID(s):
- 2008154
- PAR ID:
- 10515161
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- La Matematica
- ISSN:
- 2730-9657
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We prove that the Hilbert scheme ofkpoints on$${\mathbb {C}}^2$$ ($$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ ) is self-dual under three-dimensional mirror symmetry using methods of geometry and integrability. Namely, we demonstrate that the corresponding quantum equivariant K-theory is invariant upon interchanging its Kähler and equivariant parameters as well as inverting the weight of the$${\mathbb {C}}^\times _\hbar $$ -action. First, we find a two-parameter family$$X_{k,l}$$ of self-mirror quiver varieties of type A and study their quantum K-theory algebras. The desired quantum K-theory of$$\hbox {Hilb}^k[{\mathbb {C}}^2]$$ is obtained via direct limit$$l\longrightarrow \infty $$ and by imposing certain periodic boundary conditions on the quiver data. Throughout the proof, we employ the quantum/classical (q-Langlands) correspondence between XXZ Bethe Ansatz equations and spaces of twisted$$\hbar $$ -opers. In the end, we propose the 3d mirror dual for the moduli spaces of torsion-free rank-Nsheaves on$${\mathbb {P}}^2$$ with the help of a different (three-parametric) family of type A quiver varieties with known mirror dual.more » « less
-
Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ where$$k \ge 2$$ . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ , where$$|x-y|$$ is the Euclidean distance betweenxandy, and$$c_k$$ is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ . From the other direction, for every$$k \ge 2$$ and$$n \ge 2$$ , there existnpoints in$$[0,1]^k$$ , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ . For the plane, the best constant is$$c_2=2$$ and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ for every$$k \ge 3$$ and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ , for every$$k \ge 2$$ . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ , which disproves the conjecture for$$k=3$$ . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed.more » « less
-
Abstract Given integers$$n> k > 0$$ , and a set of integers$$L \subset [0, k-1]$$ , anL-systemis a family of sets$$\mathcal {F}\subset \left( {\begin{array}{c}[n]\\ k\end{array}}\right) $$ such that$$|F \cap F'| \in L$$ for distinct$$F, F'\in \mathcal {F}$$ .L-systems correspond to independent sets in a certain generalized Johnson graphG(n, k, L), so that the maximum size of anL-system is equivalent to finding the independence number of the graphG(n, k, L). TheLovász number$$\vartheta (G)$$ is a semidefinite programming approximation of the independence number$$\alpha $$ of a graphG. In this paper, we determine the leading order term of$$\vartheta (G(n, k, L))$$ of any generalized Johnson graph withkandLfixed and$$n\rightarrow \infty $$ . As an application of this theorem, we give an explicit construction of a graphGonnvertices with a large gap between the Lovász number and the Shannon capacityc(G). Specifically, we prove that for any$$\epsilon > 0$$ , for infinitely manynthere is a generalized Johnson graphGonnvertices which has ratio$$\vartheta (G)/c(G) = \Omega (n^{1-\epsilon })$$ , which improves on all known constructions. The graphGa fortiorialso has ratio$$\vartheta (G)/\alpha (G) = \Omega (n^{1-\epsilon })$$ , which greatly improves on the best known explicit construction.more » « less
-
Abstract In the spanning tree congestion problem, given a connected graphG, the objective is to compute a spanning treeTinGthat minimizes its maximum edge congestion, where the congestion of an edgeeofTis the number of edges inGfor which the unique path inTbetween their endpoints traversese. The problem is known to be$$\mathbb{N}\mathbb{P}$$ -hard, but its approximability is still poorly understood, and it is not even known whether the optimum solution can be efficiently approximated with ratioo(n). In the decision version of this problem, denoted$${\varvec{K}-\textsf {STC}}$$ , we need to determine ifGhas a spanning tree with congestion at mostK. It is known that$${\varvec{K}-\textsf {STC}}$$ is$$\mathbb{N}\mathbb{P}$$ -complete for$$K\ge 8$$ , and this implies a lower bound of 1.125 on the approximation ratio of minimizing congestion. On the other hand,$${\varvec{3}-\textsf {STC}}$$ can be solved in polynomial time, with the complexity status of this problem for$$K\in { \left\{ 4,5,6,7 \right\} }$$ remaining an open problem. We substantially improve the earlier hardness results by proving that$${\varvec{K}-\textsf {STC}}$$ is$$\mathbb{N}\mathbb{P}$$ -complete for$$K\ge 5$$ . This leaves only the case$$K=4$$ open, and improves the lower bound on the approximation ratio to 1.2. Motivated by evidence that minimizing congestion is hard even for graphs of small constant radius, we also consider$${\varvec{K}-\textsf {STC}}$$ restricted to graphs of radius 2, and we prove that this variant is$$\mathbb{N}\mathbb{P}$$ -complete for all$$K\ge 6$$ .more » « less
An official website of the United States government

