skip to main content

Title: A coupled human–natural system analysis of freshwater security under climate and population change
Limited water availability, population growth, and climate change have resulted in freshwater crises in many countries. Jordan’s situation is emblematic, compounded by conflict-induced population shocks. Integrating knowledge across hydrology, climatology, agriculture, political science, geography, and economics, we present the Jordan Water Model, a nationwide coupled human–natural-engineered systems model that is used to evaluate Jordan’s freshwater security under climate and socioeconomic changes. The complex systems model simulates the trajectory of Jordan’s water system, representing dynamic interactions between a hierarchy of actors and the natural and engineered water environment. A multiagent modeling approach enables the quantification of impacts at the level of thousands of representative agents across sectors, allowing for the evaluation of both systemwide and distributional outcomes translated into a suite of water-security metrics (vulnerability, equity, shortage duration, and economic well-being). Model results indicate severe, potentially destabilizing, declines in freshwater security. Per capita water availability decreases by approximately 50% by the end of the century. Without intervening measures, >90% of the low-income household population experiences critical insecurity by the end of the century, receiving <40 L per capita per day. Widening disparity in freshwater use, lengthening shortage durations, and declining economic welfare are prevalent across narratives. To gain a foothold on more » its freshwater future, Jordan must enact a sweeping portfolio of ambitious interventions that include large-scale desalinization and comprehensive water sector reform, with model results revealing exponential improvements in water security through the coordination of supply- and demand-side measures. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
1829999
Publication Date:
NSF-PAR ID:
10226127
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
14
Page Range or eLocation-ID:
e2020431118
ISSN:
0027-8424
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Numerous studies have focused on the need to expand production of ‘blue foods’, defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographicmore »patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets.« less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016More>>
  3. The Hashemite Kingdom of Jordan is confronted with a severe freshwater crisis shaped by excess water demand and intermittent public supply. In Jordan’s capital and most populous city, Amman, the pervasive water shortage gave rise to private tanker water operations, which transport groundwater from wells in the vicinity of the city and sell it to urban consumers. These tanker water markets have received little attention in the literature up to date, particularly with regard to their relevance for commercial water users. This paper aims to empirically estimate the water demand of commercial establishments in Amman under public supply rationing andmore »to assess to which extent tanker operations contribute to meeting commercial water needs. Building on a prior simulation model of residential water consumption, the results of three extensive surveys concerned with tanker water markets and various geographic data, we develop a spatial agent-based model of the water consumption behavior of commercial establishments in different sizes. According to our estimation, 35–45% of the overall water volume consumed by the commercial sector stems from tanker operations, depending on the season. We find that the local disparities in access to affordable network water, along with the dispersion of groundwater wells around the city, result in considerable spatial differences in tanker water consumption. The outcome of this analysis could be relevant for policy attempting to enhance freshwater sustainability in Jordan.« less
  4. Abstract Background Since the novel coronavirus SARS-COV-2 was first identified to be circulating in the US on January 20, 2020, some of the worst outbreaks have occurred within state and federal prisons. The vulnerability of incarcerated populations, and the additional threats posed to the health of prison staff and the people they contact in surrounding communities underline the need to better understand the dynamics of transmission in the inter-linked incarcerated population/staff/community sub-populations to better inform optimal control of SARS-COV-2. Methods We examined SARS-CoV-2 case data from 101 non-administrative federal prisons between 5/18/2020 to 01/31/2021 and examined the per capita sizemore »of outbreaks in staff and the incarcerated population compared to outbreaks in the communities in the counties surrounding the prisons during the summer and winter waves of the SARS-COV-2 pandemic. We also examined the impact of decarceration on per capita rates in the staff/incarcerated/community populations. Results For both the summer and winter waves we found significant inter-correlations between per capita rates in the outbreaks among the incarcerated population, staff, and the community. Over-all during the pandemic, per capita rates were significantly higher in the incarcerated population than in both the staff and community (paired Student’s t-test p  = 0.03 and p  < 0.001, respectively). Average per capita rates of incarcerated population outbreaks were significantly associated with prison security level, ranked from lowest per capita rate to highest: High, Minimum, Medium, and Low security. Federal prisons decreased the incarcerated population by a relative factor of 96% comparing the winter to summer wave (one SD range [90%,102%]). We found no significant impact of decarceration on per capita rates of SARS-COV-2 infection in the staff community populations, but decarceration was significantly associated with a decrease in incarcerated per capita rates during the winter wave (Negative Binomial regression p  = 0.015). Conclusions We found significant evidence of community/staff/incarcerated population inter-linkage of SARS-COV-2 transmission. Further study is warranted to determine which control measures aimed at the incarcerated population and/or staff are most efficacious at preventing or controlling outbreaks.« less
  5. The patchy nature of landscapes drives variation in the extent of ecological processes across space. This spatial ecology is critical to our understanding of organism-environmental interactions and conservation, restoration, and resource management efforts. In fisheries, incorporation of the spatial ecology of fishes remains limited, despite its importance to fishery assessment and management. This study quantified the effects of variation in headwater river stage, as an indicator of freshwater inflow, on the distribution and movement of a valuable recreational fishery species in Florida, common snook (Centropomus undecimalis). The hypothesis tested was that variation in river stage caused important habitat shifts andmore »changes in the movement behavior of Snook. A combination of electrofishing and acoustic telemetry was used to quantify the distribution and movement patterns of snook in the upper Shark River Estuary, Everglades National Park. Negative relationships with river stage were found for all three variables measured: electrofishing catch per unit effort, the proportion of detections by upstream acoustic receivers, and movement rates. Snook were up to 5.8 times more abundant, were detected 2.3 times more frequently, and moved up to 4 times faster at lower river stages associated with seasonal drawdowns in water level. These findings show how seasonal drawdowns result in local aggregations of consumers, largely driven by improved foraging opportunities, and emphasize the importance of maintaining the natural variance in managed hydrological regimes. Results also highlight the importance of understanding the nature of flow-ecology relationships, especially given projected changes in freshwater availability with climate change.« less