skip to main content

Title: A coupled human–natural system analysis of freshwater security under climate and population change
Limited water availability, population growth, and climate change have resulted in freshwater crises in many countries. Jordan’s situation is emblematic, compounded by conflict-induced population shocks. Integrating knowledge across hydrology, climatology, agriculture, political science, geography, and economics, we present the Jordan Water Model, a nationwide coupled human–natural-engineered systems model that is used to evaluate Jordan’s freshwater security under climate and socioeconomic changes. The complex systems model simulates the trajectory of Jordan’s water system, representing dynamic interactions between a hierarchy of actors and the natural and engineered water environment. A multiagent modeling approach enables the quantification of impacts at the level of thousands of representative agents across sectors, allowing for the evaluation of both systemwide and distributional outcomes translated into a suite of water-security metrics (vulnerability, equity, shortage duration, and economic well-being). Model results indicate severe, potentially destabilizing, declines in freshwater security. Per capita water availability decreases by approximately 50% by the end of the century. Without intervening measures, >90% of the low-income household population experiences critical insecurity by the end of the century, receiving <40 L per capita per day. Widening disparity in freshwater use, lengthening shortage durations, and declining economic welfare are prevalent across narratives. To gain a foothold on more » its freshwater future, Jordan must enact a sweeping portfolio of ambitious interventions that include large-scale desalinization and comprehensive water sector reform, with model results revealing exponential improvements in water security through the coordination of supply- and demand-side measures. « less
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Numerous studies have focused on the need to expand production of ‘blue foods’, defined as aquatic foods captured or cultivated in marine and freshwater systems, to meet rising population- and income-driven demand. Here we analyze the roles of economic, demographic, and geographic factors and preferences in shaping blue food demand, using secondary data from FAO and The World Bank, parameters from published models, and case studies at national to sub-national scales. Our results show a weak cross-sectional relationship between per capita income and consumption globally when using an aggregate fish metric. Disaggregation by fish species group reveals distinct geographic patterns; for example, high consumption of freshwater fish in China and pelagic fish in Ghana and Peru where these fish are widely available, affordable, and traditionally eaten. We project a near doubling of global fish demand by mid-century assuming continued growth in aquaculture production and constant real prices for fish. Our study concludes that nutritional and environmental consequences of rising demand will depend on substitution among fish groups and other animal source foods in national diets.
  2. Abstract

    Rising salinity from road deicing salts threatens the survival and reproduction of freshwater organisms. We conducted two experiments to address howDaphnia pulexsurvival and reproduction were affected by road salt concentration (control, 120, 640 and 1200 mg Cl/L) crossed with three concentrations of water hardness (20, 97, 185 mg CaCO3/L).D. pulexsurvival was poor in our hard water treatment in both experiments (185 mg CaCO3/L), potentially indicating a low tolerance to hard water for the strain used in our experiments. With the remaining two hardness treatments (20 and 97 mg CaCO3/L), we found no evidence of an interactive effect between salt concentration and water hardness onD. pulexsurvival. In our population-level experiment,D. pulexsurvival was reduced by > 60% at 120 mg Cl/L compared to the control. In the individual experiment, survival was similar between the control and 120 mg Cl/L, but ≤ 40% of individuals survived in 640 and 1200 mg Cl/L. For the surviving individuals across all treatments, the number of offspring produced per individual declined with increasing Clconcentration and in hard water. Our results indicate that current Clthresholds may not protect some zooplankton and reduced food availability per capita may enhance the negative impacts of road salt.

  3. Abstract

    This study seeks to understand how Argentina's energy, water, and land (EWL) systems will co‐evolve under a representative array of human and earth system influences, including socioeconomic change, climate change, and climate policy. To capture Argentina's sub‐national EWL dynamics in the context of global change, we couple the Global Change Analysis Model with a suite of consistent, gridded sectoral downscaling models to explore multiple stakeholder‐engaged scenarios. Across scenarios, Argentina has the economic opportunity to use its vast land resources to satisfy growing domestic and international demand for crops, such as oil (e.g., soy) and biomass. The human (rather than earth) system produces the most dominant changes in mid‐century EWL resource use. A Reference scenario characterized by modest socioeconomic growth projects a 40% increase in Argentina's agricultural production by 2050 (relative to 2020) by using 50,000 km2of additional cropland and 40% more water. A Climate Policy scenario designed to achieve net‐zero carbon emissions globally shortly after mid‐century projects that Argentina could use 100,000 km2of additional land (and 65% more water) to grow biomass and other crops. The burden of navigating these national opportunities and challenges could fall disproportionately on a subset of Argentina's river basins. The Colorado and Negro basins could experiencemore »moderate‐to‐severe water scarcity as they simultaneously navigate substantial irrigated crop demand growth and climate‐induced declines in natural water availability. Argentina serves as a generalizable testbed to demonstrate that multi‐scale EWL planning challenges can be identified and managed more effectively via integrated analysis of coupled human‐earth systems.

    « less
  4. Irrigation is the primary consumer of freshwater by humans and accounts for over 70% of all annual water use. However, due to the shortage of open critical information in agriculture such as soil, precipitation, and crop status, farmers heavily rely on empirical knowledge to schedule irrigation and tend to excessive irrigation to ensure crop yields. This paper presents WaterSmart-GIS, a web-based geographic information system (GIS), to collect and disseminate near-real-time information critical for irrigation scheduling, such as soil moisture, evapotranspiration, precipitation, and humidity, to stakeholders. The disseminated datasets include both numerical model results of reanalysis and forecasting from HRLDAS (High-Resolution Land Data Assimilation System), and the remote sensing datasets from NASA SMAP (Soil Moisture Active Passive) and MODIS (Moderate-Resolution Imaging Spectroradiometer). The system aims to quickly and easily create a smart, customized irrigation scheduler for individual fields to relieve the burden on farmers and to significantly reduce wasted water, energy, and equipment due to excessive irrigation. The system is prototyped here with an application in Nebraska, demonstrating its ability to collect and deliver information to end-users via the web application, which provides online analytic functionality such as point-based query, spatial statistics, and timeseries query. Systems such as this will playmore »a critical role in the next few decades to sustain agriculture, which faces great challenges from climate change and increased natural disasters.« less
  5. Abstract Scarce and unreliable urban water supply in many countries has caused municipal users to rely on transfers from rural wells via unregulated markets. Assessments of this pervasive water re-allocation institution and its impacts on aquifers, consumer equity and affordability are lacking. We present a rigorous coupled human–natural system analysis of rural-to-urban tanker water market supply and demand in Jordan, a quintessential example of a nation relying heavily on such markets, fed by predominantly illegal water abstractions. Employing a shadow-economic approach validated using multiple data types, we estimate that unregulated water sales exceed government licences 10.7-fold, equalling 27% of the groundwater abstracted above sustainable yields. These markets supply 15% of all drinking water at high prices, account for 52% of all urban water revenue and constrain the public supply system’s ability to recover costs. We project that household reliance on tanker water will grow 2.6-fold by 2050 under population growth and climate change. Our analysis suggests that improving the efficiency and equity of public water supply is needed to ensure water security while avoiding uncontrolled groundwater depletion by growing tanker markets.