- Publication Date:
- NSF-PAR ID:
- 10226225
- Journal Name:
- Frontiers in Microbiology
- Volume:
- 12
- ISSN:
- 1664-302X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Brun, Yves V. (Ed.)ABSTRACT The alphaproteobacterium Sinorhizobium meliloti secretes two acidic exopolysaccharides (EPSs), succinoglycan (EPSI) and galactoglucan (EPSII), which differentially enable it to adapt to a changing environment. Succinoglycan is essential for invasion of plant hosts and, thus, for the formation of nitrogen-fixing root nodules. Galactoglucan is critical for population-based behaviors such as swarming and biofilm formation and can facilitate invasion in the absence of succinoglycan on some host plants. The biosynthesis of galactoglucan is not as completely understood as that of succinoglycan. We devised a pipeline to identify putative pyruvyltransferase and acetyltransferase genes, construct genomic deletions in strains engineered to produce eithermore »
-
Petersen, Jillian Michelle (Ed.)ABSTRACT Bacterial chemotaxis affords motile bacteria the ability to navigate the environment to locate niches for growth and survival. At the molecular level, chemotaxis depends on chemoreceptor signaling arrays that interact with cytoplasmic proteins to control the direction of movement. In Azospirillum brasilense , chemotaxis is mediated by two distinct chemotaxis pathways: Che1 and Che4. Both Che1 and Che4 are critical in the A. brasilense free-living and plant-associated lifestyles. Here, we use whole-cell proteomics and metabolomics to characterize the role of chemotaxis in A. brasilense physiology. We found that mutants lacking CheA1 or CheA4 or both are affected in nonchemotaxismore »
-
The bacterium Myxococcus xanthus forms both developmental and vegetative types of biofilms. While the former has been studied on both agar plates and submerged surfaces, the latter has been investigated predominantly on agar surfaces as swarming colonies. Here we describe the development of a microplate-based assay for the submerged biofilms of M. xanthus under vegetative conditions. We examined the impacts of inoculation, aeration, and temperature to optimize the conditions for the assay. Aeration was observed to be critical for the effective development of submerged biofilms by M. xanthus, an obligate aerobic bacterium. In addition, temperature plays an important role inmore »
-
ABSTRACT The dinucleotide second messenger c-di-GMP has emerged as a central regulator of reversible cell attachment during bacterial biofilm formation. A prominent cell adhesion mechanism first identified in pseudomonads combines two c-di-GMP-mediated processes: transcription of a large adhesin and its cell surface display via posttranslational proteolytic control. Here, we characterize an orthologous c-di-GMP effector system and show that it is operational in Vibrio cholerae , where it regulates two distinct classes of adhesins. Through structural analyses, we reveal a conserved autoinhibition mechanism of the c-di-GMP receptor that controls adhesin proteolysis and present a structure of a c-di-GMP-bound receptor module. Wemore »
-
Polycomb Group (PcG) proteins are part of an epigenetic cell memory system that plays essential roles in multicellular development, stem cell biology, X chromosome inactivation, and cancer. In animals, plants, and many fungi, Polycomb Repressive Complex 2 (PRC2) catalyzes trimethylation of histone H3 lysine 27 (H3K27me3) to assemble transcriptionally repressed facultative heterochromatin. PRC2 is structurally and functionally conserved in the model fungus
Neurospora crassa , and recent work in this organism has generated insights into PRC2 control and function. To identify components of the facultative heterochromatin pathway, we performed a targeted screen ofNeurospora deletion strains lacking individual ATP-dependent chromatin remodeling enzymes. We foundmore »