skip to main content


Title: Two-dimensional Dirac spin-gapless semiconductors with tunable perpendicular magnetic anisotropy and a robust quantum anomalous Hall effect
A major recent breakthrough in materials science is the emergence of intrinsic magnetism in two-dimensional (2D) crystals, which opens the door to more cutting-edge fields in the 2D family and could eventually lead to novel data-storage and information devices with further miniaturization. Herein we propose an experimentally feasible 2D material, Fe 2 I 2 , which is an intrinsic room-temperature ferromagnet exhibiting perpendicular magnetic anisotropy (PMA). Using first-principles calculations, we demonstrate that single-layer (SL) Fe 2 I 2 is a spin-gapless semiconductor with a spin-polarized Dirac cone and linear energy dispersion in one spin channel, exhibiting promising dissipation-less transport properties with a Fermi velocity up to 6.39 × 10 5 m s −1 . Our results reveal that both strain and ferroelectric polarization switching could induce an out-of- to in-plane spin reorientation in the 2D Fe 2 I 2 layer, revealing its advantage in assembling spintronic devices. In addition, spin–orbit coupling (SOC) triggers a topologically nontrivial band gap of 301 meV with a nonzero Chern number (| C | = 2), giving rise to a robust quantum anomalous Hall (QAH) state. The 2D crystal also exhibits high carrier mobilites of 0.452 × 10 3 and 0.201 × 10 3 cm 2 V −1 s −1 for the electrons and holes, respectively. The combination of these unique properties renders the 2D Fe 2 I 2 ferromagnet a promising platform for high efficiency multi-functional spintronic applications.  more » « less
Award ID(s):
1828019
NSF-PAR ID:
10226260
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Materials Horizons
Volume:
7
Issue:
8
ISSN:
2051-6347
Page Range / eLocation ID:
2071 to 2077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We offer a perspective on the prospects of ultrafast spintronics and opto-magnetism as a pathway to high-performance, energy-efficient, and non-volatile embedded memory in digital integrated circuit applications. Conventional spintronic devices, such as spin-transfer-torque magnetic-resistive random-access memory (STT-MRAM) and spin–orbit torque MRAM, are promising due to their non-volatility, energy-efficiency, and high endurance. STT-MRAMs are now entering into the commercial market; however, they are limited in write speed to the nanosecond timescale. Improvement in the write speed of spintronic devices can significantly increase their usefulness as viable alternatives to the existing CMOS-based devices. In this article, we discuss recent studies that advance the field of ultrafast spintronics and opto-magnetism. An optimized ferromagnet–ferrimagnet exchange-coupled magnetic stack, which can serve as the free layer of a magnetic tunnel junction (MTJ), can be optically switched in as fast as ∼3 ps. Integration of ultrafast magnetic switching of a similar stack into an MTJ device has enabled electrical readout of the switched state using a relatively larger tunneling magnetoresistance ratio. Purely electronic ultrafast spin–orbit torque induced switching of a ferromagnet has been demonstrated using ∼6 ps long charge current pulses. We conclude our Perspective by discussing some of the challenges that remain to be addressed to accelerate ultrafast spintronics technologies toward practical implementation in high-performance digital information processing systems.

     
    more » « less
  2. Abstract

    The van der Waals magnets CrX3(X = I, Br, and Cl) exhibit highly tunable magnetic properties and are promising candidates for developing novel two‐dimensional (2D) spintronic devices such as magnetic tunnel junctions and spin tunneling transistors. Previous studies of the antiferromagnetic CrCl3have mainly focused on mechanically exfoliated samples. Controlled synthesis of high quality atomically thin flakes is critical for their technological implementation but has not been achieved to date. This work reports the growth of large CrCl3flakes down to monolayer thickness via the physical vapor transport technique. Both isolated flakes with well‐defined facets and long stripe samples with the trilayer portion exceeding 60 µm have been obtained. High‐resolution transmission electron microscopy studies show that the CrCl3flakes are single crystalline in the monoclinic structure, consistent with the Raman results. The room temperature stability of the CrCl3flakes decreases with decreasing thickness. The tunneling magnetoresistance of graphite/CrCl3/graphite tunnel junctions confirms that few‐layer CrCl3possesses in‐plane magnetic anisotropy and Néel temperature of 17 K. This study paves the path for developing CrCl3‐based scalable 2D spintronic applications.

     
    more » « less
  3. All van der Waals Fe 3 GeTe 2 /Cr 2 Ge 2 Te 6 /graphite magnetic heterojunctions have been fabricated via mechanical exfoliation and stacking, and their magnetotransport properties are studied in detail. At low bias voltages, large negative junction magnetoresistances have been observed and are attributed to spin-conserving tunneling transport across an insulating Cr 2 Ge 2 Te 6 layer. With increasing bias, a crossover to Fowler–Nordheim tunneling takes place. The negative sign of the tunneling magnetoresistance suggests that the bottom of a conduction band in Cr 2 Ge 2 Te 6 belongs to minority spins, opposite to the findings of some first-principles calculations. This work shows that the vdW heterostructures based on 2D magnetic insulators are a valuable platform to gain further insight into spin polarized tunneling transport, which is the basis for pursuing high performance spintronic devices and a large variety of quantum phenomena. 
    more » « less
  4. Abstract Van der Waals (vdW) material Fe 5 GeTe 2 , with its long-range ferromagnetic ordering near room temperature, has significant potential to become an enabling platform for implementing novel spintronic and quantum devices. To pave the way for applications, it is crucial to determine the magnetic properties when the thickness of Fe 5 GeTe 2 reaches the few-layers regime. However, this is highly challenging due to the need for a characterization technique that is local, highly sensitive, artifact-free, and operational with minimal fabrication. Prior studies have indicated that Curie temperature T C can reach up to close to room temperature for exfoliated Fe 5 GeTe 2 flakes, as measured via electrical transport; there is a need to validate these results with a measurement that reveals magnetism more directly. In this work, we investigate the magnetic properties of exfoliated thin flakes of vdW magnet Fe 5 GeTe 2 via quantum magnetic imaging technique based on nitrogen vacancy centers in diamond. Through imaging the stray fields, we confirm room-temperature magnetic order in Fe 5 GeTe 2 thin flakes with thickness down to 7 units cell. The stray field patterns and their response to magnetizing fields with different polarities is consistent with previously reported perpendicular easy-axis anisotropy. Furthermore, we perform imaging at different temperatures and determine the Curie temperature of the flakes at ≈300 K. These results provide the basis for realizing a room-temperature monolayer ferromagnet with Fe 5 GeTe 2 . This work also demonstrates that the imaging technique enables rapid screening of multiple flakes simultaneously as well as time-resolved imaging for monitoring time-dependent magnetic behaviors, thereby paving the way towards high throughput characterization of potential two-dimensional (2D) magnets near room temperature and providing critical insights into the evolution of domain behaviors in 2D magnets due to degradation. 
    more » « less
  5. Abstract

    Spintronics applications of thin‐film magnets require control and design of specific magnetic properties. Exchange bias, originating from the pinning of spins in a ferromagnet by these of an antiferromagnet, is a part of the highly important elements for spintronics applications. Here, an exchange bias of ≈90 mT in a van der Waals ferromagnet encapsulated by two antiferromagnets at 5 K, the value of which is highly tunable by the field coolings, is reported. The non‐antisymmetric dependence of exchange bias on field cooling is explained through considering an uncompensated interfacial magnetic layer of an antiferromagnet with a noncollinear spin texture, and a weak antiferromagnetic order in the oxidized layer, at two ferromagnet/antiferromagnet interfaces. This work opens up new routes toward designing and controlling 2D spintronic devices made of atomically thin van der Waals magnets.

     
    more » « less