skip to main content


Title: Anion–Anion Interactions in Aerogen-Bonded Complexes. Influence of Solvent Environment
Ab initio calculations are applied to the question as to whether a AeX5− anion (Ae = Kr, Xe) can engage in a stable complex with another anion: F−, Cl−, or CN−. The latter approaches the central Ae atom from above the molecular plane, along its C5 axis. While the electrostatic repulsion between the two anions prevents their association in the gas phase, immersion of the system in a polar medium allows dimerization to proceed. The aerogen bond is a weak one, with binding energies less than 2 kcal/mol, even in highly polar aqueous solvent. The complexes are metastable in the less polar solvents THF and DMF, with dissociation opposed by a small energy barrier.  more » « less
Award ID(s):
1954310
NSF-PAR ID:
10226292
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Molecules
Volume:
26
Issue:
8
ISSN:
1420-3049
Page Range / eLocation ID:
2116
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The influence of salts on the solvophobic interactions of two non-polar surfaces in organic solvent was examined using a series of molecular balances. Specific anion effects were observed that followed the Hofmeister series and enhanced the solvophobic effect up to two-fold. 
    more » « less
  2. A 3,5-bis((2-iodophenyl)ethynyl)pyridinium scaffold was synthesized which introduces the use of methanesulfonyl withdrawing groups to polarize iodine halogen bonding units for anion binding. We investigate the capability of this receptor to bind halides in polar media, while further probing the structure–property relationship of this well-polarized yet under-explored halogen bonding system. 
    more » « less
  3. Maximizing ion conduction in single-ion-conducting ionomers is essential for their application in energy-related technologies such as Li-ion batteries. Understanding the anion chemical composition impacts on ion conduction offers new perspectives to maximize ion transport, since the current approach of lowering T g has apparently reached a limit (lowest T g ∼ 190 K, highest conductivity ∼10 −5 –10 −4 S cm −1 ). Here, a series of random ionomers are synthesized by copolymerizing poly(ethylene glycol)methacrylate with either sulfonylimide lithium methacrylate (MTLi) or sulfonate lithium methacrylate (MSLi) using reversible addition–fragmentation chain transfer (RAFT) polymerization. Li-Ion conduction and self-diffusion coefficients ( D Li + ) of the ionomers are characterized with dielectric relaxation spectroscopy (DRS) and pulsed-field-gradient (PFG) NMR diffusometry, respectively. Increasing ion content decreases the Li-ion conductivity and D Li + , as expected from the increased T g . Moreover, a considerably lower ionic conductivity and D Li + are observed for MSLi compared to MTLi at constant ion content and T g / T . As revealed from X-ray scattering, strong ion aggregation in MSLi results in much lower conductivity and D Li + compared with less aggregated MTLi based on the more delocalized sulfonylimide anion. These results emphasize the detrimental and molecularly specific role of ion aggregation in Li-ion conductivity, and highlight the necessity for minimizing ion aggregation via the rational choice of anion chemical composition. 
    more » « less
  4. null (Ed.)
    As part of our efforts in the chemistry of main group platforms that support anion sensing and transport, we are now reporting the synthesis of anitmony-based bidentate Lewis acids featuring the o -C 6 F 4 backbone. These compounds can be easily accessed by reaction of the newly synthesized o -C 6 F 4 (SbPh 2 ) 2 ( 5 ) with o -chloranil or octafluorophenanthra-9,10-quinone, affording the corresponding distiboranes 6 and 7 of general formula o -C 6 F 4 (SbPh 2 (diolate)) 2 with diolate = tetrachlorocatecholate for 6 and octafluorophenanthrene-9,10-diolate for 7 , respectively. While 6 is very poorly soluble, its octafluorophenanthrene-9,10-diolate analog 7 readily dissolves in CH 2 Cl 2 and undergoes swift conversion into the corresponding fluoride chelate complex [ 7 -μ 2 -F] − which has been isolated as a [ n Bu 4 N] + salt. The o -C 6 H 4 analog of 7 , referred to as 8 , has also been prepared. Although less Lewis acidic than 7 , 8 also forms a very stable fluoride chelate complex ([ 8 -μ 2 -F] − ). Altogether, our experiental results, coupled with computational analyses and fluoride anion affinity calculations, show that 7 and 8 are some of the strongest antimony-based fluoride anion chelators prepared to date. Another notable aspect of this work concerns the use of the octafluorophenanthrene-9,10-diolate ligand and its ablity to impart advantageous solubility and Lewis acidity properties. 
    more » « less
  5. Understanding the effects of polymer chemistry on membrane ion transport properties is critical for enabling efforts to design advanced highly permselective ion exchange membranes for water purification and energy applications. Here, the effects of fixed charge group type on anion exchange membrane (AEM) apparent permselectivity and ion transport properties were investigated using two crosslinked AEMs. The two AEMs, containing a similar acrylonitrile, styrene and divinyl benzene-based polymer backbone, had either trimethyl ammonium or 1,4-dimethyl imidazolium fixed charge groups. Membrane deswelling, apparent permselectivity and ion transport properties of the two AEMs were characterized using aqueous solutions of lithium chloride, sodium chloride, ammonium chloride, sodium bromide and sodium nitrate. Apparent permselectivity measurements revealed a minor influence of the fixed charge group type on apparent permselectivity. Further analysis of membrane swelling and ion sorption, however, suggests that less hydrophilic fixed charge groups more effectively exclude co-ions compared to more hydrophilic fixed charge groups. Analysis of ion diffusion properties suggest that ion and fixed charge group enthalpy of hydration properties influence ion transport, likely through a counter-ion condensation, ion pairing or binding mechanism. Interactions between fixed charge groups and counter-ions may be stronger if the enthalpy of hydration properties of the ion and fixed charge group are similar, and suppressed counter-ion diffusion was observed in this situation. In general, the hydration properties of the fixed charge group may be important for understanding how fixed charge group chemistry influences ion transport properties in anion exchange membranes. 
    more » « less