skip to main content

Title: Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction
Abstract Structure-based virtual screenings (SBVSs) play an important role in drug discovery projects. However, it is still a challenge to accurately predict the binding affinity of an arbitrary molecule binds to a drug target and prioritize top ligands from an SBVS. In this study, we developed a novel method, using ligand-residue interaction profiles (IPs) to construct machine learning (ML)-based prediction models, to significantly improve the screening performance in SBVSs. Such a kind of the prediction model is called an IP scoring function (IP-SF). We systematically investigated how to improve the performance of IP-SFs from many perspectives, including the sampling methods before interaction energy calculation and different ML algorithms. Using six drug targets with each having hundreds of known ligands, we conducted a critical evaluation on the developed IP-SFs. The IP-SFs employing a gradient boosting decision tree (GBDT) algorithm in conjunction with the MIN + GB simulation protocol achieved the best overall performance. Its scoring power, ranking power and screening power significantly outperformed the Glide SF. First, compared with Glide, the average values of mean absolute error and root mean square error of GBDT/MIN + GB decreased about 38 and 36%, respectively. Second, the mean values of squared correlation coefficient and predictive index increased about more » 225 and 73%, respectively. Third, more encouragingly, the average value of the areas under the curve of receiver operating characteristic for six targets by GBDT, 0.87, is significantly better than that by Glide, which is only 0.71. Thus, we expected IP-SFs to have broad and promising applications in SBVSs. « less
Authors:
; ; ; ; ;
Award ID(s):
1955260
Publication Date:
NSF-PAR ID:
10226298
Journal Name:
Briefings in Bioinformatics
ISSN:
1467-5463
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this study, we developed a novel algorithm to improve the screening performance of an arbitrary docking scoring function by recalibrating the docking score of a query compound based on its structure similarity with a set of training compounds, while the extra computational cost is neglectable. Two popular docking methods, Glide and AutoDock Vina were adopted as the original scoring functions to be processed with our new algorithm and similar improvement performance was achieved. Predicted binding affinities were compared against experimental data from ChEMBL and DUD-E databases. 11 representative drug receptors from diverse drug target categories were applied to evaluate the hybrid scoring function. The effects of four different fingerprints (FP2, FP3, FP4, and MACCS) and the four different compound similarity effect (CSE) functions were explored. Encouragingly, the screening performance was significantly improved for all 11 drug targets especially when CSE = S 4 (S is the Tanimoto structural similarity) and FP2 fingerprint were applied. The average predictive index (PI) values increased from 0.34 to 0.66 and 0.39 to 0.71 for the Glide and AutoDock vina scoring functions, respectively. To evaluate the performance of the calibration algorithm in drug lead identification, we also imposed an upper limit on the structural similaritymore »to mimic the real scenario of screening diverse libraries for which query ligands are general-purpose screening compounds and they are not necessarily structurally similar to reference ligands. Encouragingly, we found our hybrid scoring function still outperformed the original docking scoring function. The hybrid scoring function was further evaluated using external datasets for two systems and we found the PI values increased from 0.24 to 0.46 and 0.14 to 0.42 for A2AR and CFX systems, respectively. In a conclusion, our calibration algorithm can significantly improve the virtual screening performance in both drug lead optimization and identification phases with neglectable computational cost.« less
  2. Abstract Background Blood glucose (BG) management is crucial for type-1 diabetes patients resulting in the necessity of reliable artificial pancreas or insulin infusion systems. In recent years, deep learning techniques have been utilized for a more accurate BG level prediction system. However, continuous glucose monitoring (CGM) readings are susceptible to sensor errors. As a result, inaccurate CGM readings would affect BG prediction and make it unreliable, even if the most optimal machine learning model is used. Methods In this work, we propose a novel approach to predicting blood glucose level with a stacked Long short-term memory (LSTM) based deep recurrent neural network (RNN) model considering sensor fault. We use the Kalman smoothing technique for the correction of the inaccurate CGM readings due to sensor error. Results For the OhioT1DM (2018) dataset, containing eight weeks’ data from six different patients, we achieve an average RMSE of 6.45 and 17.24 mg/dl for 30 min and 60 min of prediction horizon (PH), respectively. Conclusions To the best of our knowledge, this is the leading average prediction accuracy for the ohioT1DM dataset. Different physiological information, e.g., Kalman smoothed CGM data, carbohydrates from the meal, bolus insulin, and cumulative step counts in a fixed time interval, aremore »crafted to represent meaningful features used as input to the model. The goal of our approach is to lower the difference between the predicted CGM values and the fingerstick blood glucose readings—the ground truth. Our results indicate that the proposed approach is feasible for more reliable BG forecasting that might improve the performance of the artificial pancreas and insulin infusion system for T1D diabetes management.« less
  3. Abstract New drug production, from target identification to marketing approval, takes over 12 years and can cost around $2.6 billion. Furthermore, the COVID-19 pandemic has unveiled the urgent need for more powerful computational methods for drug discovery. Here, we review the computational approaches to predicting protein–ligand interactions in the context of drug discovery, focusing on methods using artificial intelligence (AI). We begin with a brief introduction to proteins (targets), ligands (e.g. drugs) and their interactions for nonexperts. Next, we review databases that are commonly used in the domain of protein–ligand interactions. Finally, we survey and analyze the machine learning (ML) approaches implemented to predict protein–ligand binding sites, ligand-binding affinity and binding pose (conformation) including both classical ML algorithms and recent deep learning methods. After exploring the correlation between these three aspects of protein–ligand interaction, it has been proposed that they should be studied in unison. We anticipate that our review will aid exploration and development of more accurate ML-based prediction strategies for studying protein–ligand interactions.
  4. A novel wearable solution using soft robotic sensors (SRS) has been investigated to model foot-ankle kinematics during gait cycles. The capacitance of SRS related to foot-ankle basic movements was quantified during the gait movements of 20 participants on a flat surface as well as a cross-sloped surface. In order to evaluate the power of SRS in modeling foot-ankle kinematics, three-dimensional (3D) motion capture data was also collected for analyzing gait movement. Three different approaches were employed to quantify the relationship between the SRS and the 3D motion capture system, including multivariable linear regression, an artificial neural network (ANN), and a time-series long short-term memory (LSTM) network. Models were compared based on the root mean squared error (RMSE) of the prediction of the joint angle of the foot in the sagittal and frontal plane, collected from the motion capture system. There was not a significant difference between the error rates of the three different models. The ANN resulted in an average RMSE of 3.63, being slightly more successful in comparison to the average RMSE values of 3.94 and 3.98 resulting from multivariable linear regression and LSTM, respectively. The low error rate of the models revealed the high performance of SRS inmore »capturing foot-ankle kinematics during the human gait cycle.« less
  5. With the recent explosion in the size of libraries available for screening, virtual screening is positioned to assume a more prominent role in early drug discovery’s search for active chemical matter. In typical virtual screens, however, only about 12% of the top-scoring compounds actually show activity when tested in biochemical assays. We argue that most scoring functions used for this task have been developed with insufficient thoughtfulness into the datasets on which they are trained and tested, leading to overly simplistic models and/or overtraining. These problems are compounded in the literature because studies reporting new scoring methods have not validated their models prospectively within the same study. Here, we report a strategy for building a training dataset (D-COID) that aims to generate highly compelling decoy complexes that are individually matched to available active complexes. Using this dataset, we train a general-purpose classifier for virtual screening (vScreenML) that is built on the XGBoost framework. In retrospective benchmarks, our classifier shows outstanding performance relative to other scoring functions. In a prospective context, nearly all candidate inhibitors from a screen against acetylcholinesterase show detectable activity; beyond this, 10 of 23 compounds have IC 50 better than 50 μM. Without any medicinal chemistry optimization,more »the most potent hit has IC 50 280 nM, corresponding to K i of 173 nM. These results support using the D-COID strategy for training classifiers in other computational biology tasks, and for vScreenML in virtual screening campaigns against other protein targets. Both D-COID and vScreenML are freely distributed to facilitate such efforts.« less