skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterisation of charred organic matter in micromorphological thin sections by means of Raman spectroscopy
Abstract Burned or charred organic matter in anthropogenic combustion features may provide important clues about past human activities related to fire. To interpret archaeological hearths, a correct identification of the organic source material is key. In the present work, Raman spectroscopy is applied to characterise the structural properties of char produced in laboratory heating- and open-fire experiments. This reference data set is compared to analyses of three different archaeological sites with Middle Palaeolithic combustion contexts. The results show that it is possible to determine whether a charred fragment is the product of burning animal-derived matter (e.g. meat) or plant-derived matter (e.g. wood) by plotting a few Raman spectral parameters (i.e. position of G and D bands, and intensity ratios H D / H G and H V / H G ) against one another. The most effective parameters for discriminating animal- from plant-derived matter are the position of the G band and the H V / H G intensity ratio. This method can be applied on raw sample material and on uncovered micromorphological thin sections. The latter greatly compliments micromorphology by providing information about char fragments without any clear morphological characteristics. This study is the first of its kind and may provide archaeologists with a robust new method to distinguish animal- from plant-derived char in thin sections.  more » « less
Award ID(s):
1758285
PAR ID:
10226394
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Archaeological and Anthropological Sciences
Volume:
13
Issue:
1
ISSN:
1866-9557
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Because traditional paleofire archives (e.g., burn scars on trees, charcoal in lake sediments) are not available in all settings, new ways of reconstructing past fire activity are needed. We focus here on polycyclic aromatic hydrocarbons (PAHs) in stalagmites. PAHs are organic molecules composed of two or more fused aromatic rings formed through incomplete combustion of organic matter, and vary in molecular weight depending on combustion conditions. Because the use of PAHs in stalagmites as a paleofire indicator is still in its infancy and because the production, deposition, and transport of PAHs into a cave is a complex and multi-faceted system, we tested the reproducibility of PAHs in two coeval and precisely-dated aragonite stalagmites – KNI-51-F and KNI-51-G - from KNI-51 (15.3°S, 128.6°E), a shallow cave located in the Kimberley region of tropical Western Australia. KNI-51-F and KNI-51-G span 1110-1620 CE and 1310-1630 CE, respectively. Each was hand-milled for analysis in continuous sections spanning approx. 2 mm-tall intervals at Ca’ Foscari University. Owing to differences in growth rate, temporal resolutions for KNI-51-F and KNI-51-G were 3±2 and 1±0.4 yr/sample, respectively. Chemical preparations and analysis methods follow those of Argiriadis et al. (2019) Analytical Chemistry, volume 91. In order to assess replication between the two stalagmites, we compared total abundances of low molecular weight (LMW: Napthalene, Acenaphthylene, Acenaphthene, Fluorene), medium molecular weight (MMW: Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo(a)Anthracene, Chrysene, Retene), and high molecular weight (HHM: Benzo(b)Fluoranthene, Benzo(k)Fluoranthene, Benzo(e)Pyrene, Benzo(a)Pyrene, Perylene, Benzo(ghi)Perylene, Indeno(1,2,3-c,d)Pyrene, Dibenzo(A,H)Anthracene) PAHs. Total abundances of LMW, MMW, and HMW PAHs are similar (<10 ng/g) except for HMW PAHs in KNI-51-G, which are generally <1 ng/g. Total LMW and MMW abundance time series replicate well, with multiple synchronous multidecadal periods characterized by consistently low PAH abundances, suggestive of reduced bushfire activity, punctuated by intervals of high PAH abundances, likely reflecting frequent bushfire. Less coherence exists between HMW PAHs. 
    more » « less
  2. Polycyclic aromatic hydrocarbons (PAHs) are a suite of molecules produced by incomplete combustion processes (i.e., pyrogenic) as well as by thermal maturation of organic matter (i.e., petrogenic processes). PAHs are increasingly being used to reconstruct fire activity in ancient environments amid efforts to determine best practices for PAH-biomass normalization and efforts to differentiate between petrogenic and pyrogenic sources. Long chain alkanes (LCAs) are commonly used account for changes in biomass production (or biomarker preservation) relative to PAH production, but this normalization hasn’t been tested with modern observations. Other indices for PAH sources (e.g., APDI), fuel types (e.g., DMPx and DMPy) and transport pathways (e.g., LMW ratios) have been developed based on data from burn experiments and environmental chemistry literature, but there are limited studies linking PAH distributions to natural fire characteristics. We measured PAHs in a collection of modern soil samples spanning a range of environments in East Africa. Previous work on this sample set includes soil carbonate and plant wax carbon isotope measurements, two common paleoenvironmental proxies for vegetation. We used satellite data (MODIS and GFED burn products) to estimate the burned area, fire return frequency, and fire intensity experienced by each of the sites in the decade preceding soil sample collection. We compared our measured soil PAH data to satellite-inferred fire characteristics and existing plant wax carbon isotope data to assess both the fidelity of PAH-LCA normalization and the utility of PAH proxies such as DMPx, DMPy, and APDI in the East African paleo-record. 
    more » « less
  3. In the Raman probing of multilayer thin film materials, the intensity of the measured Raman scattered light will be impacted by the thickness of the thin film layers. The Raman signal intensity will vary non-monotonically with thickness due to interference from the multiple reflections of both the incident laser light and the Raman scattered light of thin film interfaces. Here, a method for calculating the Raman signal intensity from a multilayer thin film system based on the transfer matrix method with a rigorous treatment of the Raman signal generation (discontinuity) is presented. This calculation methodology is valid for any thin film stack with an arbitrary number of layers with arbitrary thicknesses. This approach is applied to several thin film material systems, including silicon-on-sapphire thin films, graphene on Si with a SiO2capping layer, and multilayer MoS2with the presence of a gap between layers and substrate. Different applications where this method can be used in the Raman probing of thin film material properties are discussed. 
    more » « less
  4. Wildland-urban interface (WUI) fires consume fuels, such as vegetation and structural materials, leaving behind ash composed primarily of pyrogenic carbon and metal oxides. However, there is currently limited understanding of the role of WUI fire ash from different sources as a source of paramagnetic species such as environmentally persistent free radicals (EPFRs) and transition metals in the environment. Electron paramagnetic resonance (EPR) was used to detect and quantify paramagnetic species, including organic persistent free radicals and transition metal spins, in fifty-three fire ash and soil samples collected following the North Complex Fire and the Sonoma-Lake-Napa Unit (LNU) Lightning Complex Fire, California, 2020. High concentrations of organic EPFRs (e.g., 1.4 × 1014 to 1.9 × 1017 spins g−1) were detected in the studied WUI fire ash along with other paramagnetic species such as iron and manganese oxides, as well as Fe3+ and Mn2+ ions. The mean concentrations of EPFRs in various ash types decreased following the order: vegetation ash (1.1 × 1017 ± 1.1 × 1017 spins g−1) > structural ash (1.6 × 1016 ± 3.7 × 1016 spins g−1) > vehicle ash (6.4 × 1015 ± 8.6 × 1015 spins g−1) > soil (3.2 × 1015 ± 3.7 × 1015 spins g−1). The mean concentrations of EPFRs decreased with increased combustion completeness indicated by ash color; black (1.1 × 1017 ± 1.1 × 1017 spins g−1) > white (2.5 × 1016 ± 4.4 × 1016 spins g−1) > gray (1.8 × 1016 ± 2.4 × 1016 spins g−1). In contrast, the relative amounts of reduced Mn2+ ions increased with increased combustion completeness. Thus, WUI fire ash is an important global source of EPFRs and reduced metal species (e.g., Mn2+). Further research is needed to underpin the formation, transformation, and environmental and human health impacts of these paramagnetic species in light of the projected increased frequency, size, and severity of WUI fires. 
    more » « less
  5. This work explores a novel approach for improving the sodium-ion battery performance of coal char using flash pyrolysis and an ether-based electrolyte. Coal char is an ultra-low cost hard carbon with promising application as an anode material in sodium-ion batteries. During flash pyrolysis, char is heated at 1000 °C/s in a drop-tube furnace to create a highly-irregular structure. The larger d-spacing and smaller closed micropore diameter of flash-pyrolyzed char increases anode capacity compared to traditional slow-pyrolyzed char electrodes. The sodium-ion battery anode performance of flash-pyrolyzed char is further improved using an ether-based electrolyte in place of the traditional ester-based electrolyte. Performance improvements include greater initial Coulombic efficiency (58% in ester- vs. 64% in ether-based electrolyte) and improved specific capacity in an ether-based electrolyte. Overall, the combination of flash pyrolysis and ether-based electrolyte increases the sodium-ion battery discharge capacity of coal char by over 50%, from 72.5 mAh g−1 (slow-pyrolyzed char in ester-based electrolyte) to 109.4 mAh g−1 (flash-pyrolyzed char in ether-based electrolyte) (50 mA g−1 discharge rate). The results highlight improvements that can be realized through flash pyrolysis of coal char for battery applications and the numerous processing advantages of flash vs. slow pyrolysis. 
    more » « less