skip to main content


Title: Cyclotetrabenzoin Acetate: A Macrocyclic Porous Molecular Crystal for CO 2 Separations by Pressure Swing Adsorption**
Abstract

A porous molecular crystal (PMC) assembled by macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for CO2separations. The 7.1×7.1 Å square pore of PMC and its ester C=O groups play important roles in improving its affinity for CO2molecules. The benzene walls of macrocycle engage in an apparent [π⋅⋅⋅π] interaction with the molecule of CO2at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0×5.0 Å square, which offers kinetic selectivity for CO2capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. Most importantly, the moderate adsorbate‐adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption processes. The eluted N2and CH4are obtained with over 99.9 % and 99.8 % purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, cyclotetrabenzoin acetate is a promising adsorbent for CO2separations from flue and natural gases.

 
more » « less
Award ID(s):
1904998
NSF-PAR ID:
10226410
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
27
ISSN:
1433-7851
Format(s):
Medium: X Size: p. 14931-14937
Size(s):
["p. 14931-14937"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A porous molecular crystal (PMC) assembled by macrocyclic cyclotetrabenzoin acetate is an efficient adsorbent for CO2separations. The 7.1×7.1 Å square pore of PMC and its ester C=O groups play important roles in improving its affinity for CO2molecules. The benzene walls of macrocycle engage in an apparent [π⋅⋅⋅π] interaction with the molecule of CO2at low pressure. In addition, the polar carbonyl groups pointing inward the square channels reduce the size of aperture to a 5.0×5.0 Å square, which offers kinetic selectivity for CO2capture. The PMC features water tolerance and high structural stability under vacuum and various gas adsorption conditions, which are rare among intrinsically porous organic molecules. Most importantly, the moderate adsorbate‐adsorbent interaction allows the PMC to be readily regenerated, and therefore applied to pressure swing adsorption processes. The eluted N2and CH4are obtained with over 99.9 % and 99.8 % purity, respectively, and the separation performance is stable for 30 cycles. Coupled with its easy synthesis, cyclotetrabenzoin acetate is a promising adsorbent for CO2separations from flue and natural gases.

     
    more » « less
  2. Abstract

    Alumina is one of the most common and stable metal oxides in nature, which has been developed as a novel adsorbent in enrichment of biomolecules due to its excellent affinity to phosphor or amino groups. In this study, ordered mesoporous alumina (OMA) with interconnected mesopores and surface acidic property is synthesized through a solvent evaporation induced co‐assembly process using poly(ethylene oxide)‐b‐polystyrene (PEO‐b‐PS) diblock copolymer as a template and aluminium acetylacetonate (Al(acac)3) as the aluminium source. The pore size (12.1–19.7 nm), pore window size (3.5–9.0 nm) and surface acidity (0.092–0.165 mmol g−1) can be precisely adjusted. The highly porous structure endows the OMA materials with high hemoglobin (Hb) immobilization capacity (170 mg g−1). The obtained Hb@OMA composite is used as an electrocatalyst of biosensor for convienet and fast detection of hydrogen peroxide (H2O2) with a low H2O2detection limit of 1.7 × 10−8mand a wide linear range of 2.5 × 10−8to 5.0 × 10−5m. Moreover, the Hb@OMA sensors show a good performance in real time detection of H2O2released from Homo sapiens bone osteosarcoma, indicating their potential application in complex biological processes.

     
    more » « less
  3. A series of N-doped porous carbons with different textural properties and N contents was prepared from a mixture of algae and glucose and their capability for the separation of CO 2 /CH 4 , C 2 H 6 /CH 4 , and CO 2 /H 2 binary mixtures under different conditions (bulk pressure, mixture composition, and temperature) were subsequently assessed in great detail. It was observed that the gas (C 2 H 6 , CO 2 , CH 4 , and H 2 ) adsorption capacity at different pressure regions was primarily governed by different adsorbent parameters (N level, narrow micropore volume, and BET specific surface area). More interestingly, it was found that N-doping can selectively enhance the heats of adsorption of C 2 H 6 and CO 2 , while it had a negligible effect on those of CH 4 and H 2 . The adsorption equilibrium selectivities for separating C 2 H 6 /CH 4 , CO 2 /CH 4 , and CO 2 /H 2 gas mixture pairs on the porous carbons were predicted using the ideal adsorbed solution theory (IAST) based on pure-component adsorption isotherms. In particular, sample NAHA-1 exhibited by far the best performance (in terms of gas adsorption capacity and selectivity) reported for porous carbons for the separation of these three binary mixtures. More significantly, NAHA-1 carbon outperforms many of its counterparts ( e.g. MOFs and zeolites), emphasizing the important role of carbonaceous adsorbents in gas purification and separation. 
    more » « less
  4. Abstract

    A new strategy for creating homochiral metal–organic frameworks through a fusion of pillaring and templating concepts is demonstrated. This strategy makes use of the synergy among various chemical interactions during self‐assembly processes, and leads to the synthesis of a series of homochiral frameworks. In the presence of only pillar‐to‐pillar π–π interactions, inter‐pillar forces compete against metal–pillar interactions, resulting in mismatch between pillar‐to‐pillar and metal‐to‐metal separations and consequently 2D materials without pillaring. To create 3D materials, a method was developed to use various aromatic molecules, polycyclic aromatic hydrocarbons in particular, as templates to modulate the inter‐pillar interaction and separation, leading to the formation of 3D homochiral frameworks. The use of aromatic molecules, especially hydrocarbons, as structure‐directing agents, represents a new approach in the development of crystalline porous materials. Aromatic templates can be post‐synthetically extracted to yield flexible porous homochiral materials with gate‐opening gas sorption behaviors for both N2and CO2at partial pressures tunable by temperature.

     
    more » « less
  5. Abstract

    A new strategy for creating homochiral metal–organic frameworks through a fusion of pillaring and templating concepts is demonstrated. This strategy makes use of the synergy among various chemical interactions during self‐assembly processes, and leads to the synthesis of a series of homochiral frameworks. In the presence of only pillar‐to‐pillar π–π interactions, inter‐pillar forces compete against metal–pillar interactions, resulting in mismatch between pillar‐to‐pillar and metal‐to‐metal separations and consequently 2D materials without pillaring. To create 3D materials, a method was developed to use various aromatic molecules, polycyclic aromatic hydrocarbons in particular, as templates to modulate the inter‐pillar interaction and separation, leading to the formation of 3D homochiral frameworks. The use of aromatic molecules, especially hydrocarbons, as structure‐directing agents, represents a new approach in the development of crystalline porous materials. Aromatic templates can be post‐synthetically extracted to yield flexible porous homochiral materials with gate‐opening gas sorption behaviors for both N2and CO2at partial pressures tunable by temperature.

     
    more » « less