skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Intra- and intermolecular C—H...F hydrogen bonds in the crystal structure of 1,2-bis[2-(2,3,4,5-tetrafluorophenyl)ethynyl]benzene
The title molecule, C22H6F8, crystallizes in the monoclinic space groupP21/cwith two unique molecules in the asymmetric unit andZ= 8. Each molecule features a short intramolecularsp2-C—H...F hydrogen bond with H...F separations at 2.363 (14) and 2.270 (14) Å, corresponding to 91 and 87.5% of the sum of the van der Waals radii, and C—H...F angles of 158.3 (14) and 166.8 (14)°, respectively. Each molecule also forms an intermolecular bifurcated CH...(F)2interaction with H...F distances ranging from 2.500 (16) to 2.597 (17) Å.  more » « less
Award ID(s):
1306284
PAR ID:
10629300
Author(s) / Creator(s):
;
Publisher / Repository:
International Union of Crystallography
Date Published:
Journal Name:
Acta Crystallographica Section E Crystallographic Communications
Volume:
80
Issue:
12
ISSN:
2056-9890
Page Range / eLocation ID:
1298 to 1301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The title compound, systematic name tris(μ2-perfluoro-o-phenylene)(μ2-3-phenyl-4H-chromen-4-one)-triangulo-trimercury, [Hg3(C6F4)3(C15H10O2)], crystallizes in the monoclinicP21/nspace group with one flavone (FLA) and one cyclic trimeric perfluoro-o-phenylenemercury (TPPM) molecule per asymmetric unit. The FLA molecule is located on one face of the TPPM acceptor and is linked in an asymmetric coordination of its carbonyl oxygen atom with two Hg centers of the TPPM macrocycle. The angular-shaped complexes pack in zigzag chains where they stackviatwo alternating TPPM–TPPM and FLA–FLA stacking patterns. The distance between the mean planes of the neighboring TPPM macrocycles in the stack is 3.445 (2) Å, and that between the benzo-γ-pyrone moieties of FLA is 3.328 (2) Å. The neighboring stacks are interdigitated through the shortened F...F, CH...F and CH...π contacts, forming a dense crystal structure. 
    more » « less
  2. The asymmetric unit in the title salt, (C8H20N)2[SnCl4(C7H4Cl2F3)2], features a di-isobutylammonium cation in a general position and a diorganotin tetrachloride dianion,i.e. tetrachloridobis(3-trifuoromethylphenyl)stannate(IV), located on a centre of inversion; the SnIVatom is octahedrally coordinated. In the crystal, charge-assisted N+—H...Cl hydrogen bonds along with C—H...F contacts occur within supramolecular layers that interdigitate along thea-axis direction. 
    more » « less
  3. Bis(triphenylsulfonium) tetrachloridomanganate(II), (C18H15S)2[MnCl4] (I), triphenylsulfonium tetrachloridoferrate(III), (C18H15S)[FeCl4] (II), and bis(triphenylsulfonium) tetrachloridocobaltate(II), (C18H15S)2[CoCl4] (III), crystallize in the monoclinic space groupsP21/n[(I) and (III)] andP21/c[(II)]. Compounds (I) and (III) each contain two crystallographically independent triphenylsulfonium (TPS+) cations in the asymmetric unit, whereas (II) has one. In all three compounds, the sulfonium centers adopt distorted trigonal–pyramidal geometries, with S—C bond lengths falling roughly in the 1.78–1.79 Å range and C—S—C angles observed at about 101 to 106°. The [MCl4]n−anions (M= Mn2+, Fe3+, Co2+;n= 2,1,2) adopt slightly distorted tetrahedral geometries, withM—Cl bond lengths in the 2.19–2.38 Å range and Cl—M—Cl angles of approximately 104–113°. Hirshfeld surface analyses shows that H...H and H...C contacts dominate the TPS+cation environments, whereas H...Cl and shortM—S interactions link each [MCl4]n−anion to the surrounding cations. In (I) and (III), inversion-centered π–π stacking further consolidates the crystal packing, while in (II) no π–π interactions are observed. 
    more » « less
  4. The crystal structure of the title compound, C15H20N2orDippIm, is reported. At 106 (2) K, the molecule has monoclinicP21/c symmetry with four molecules in the unit cell. The imidazole ring is rotated 80.7 (1)° relative to the phenyl ring. Intermolecular stabilization primarily results from close contacts between the N atom at the 3-position on the imidazole ring and the C—H bond at the 4-position on the neighboringDippIm, with aryl–aryl distances outside of the accepted distance of 5 Å for π-stacking. 
    more » « less
  5. Abstract Currently, few porous vanadium metal‐organic frameworks (V‐MOFs) are known and even fewer are obtainable as single crystals, resulting in limited information on their structures and properties. Here this work demonstrates remarkable promise of V‐MOFs by presenting an extensible family of V‐MOFs with tailorable pore geometry and properties. The synthesis leverages inter‐modular synergy on a tri‐modular pore‐partitioned platform. New V‐MOFs show a broad range of structural features and sorption properties suitable for gas storage and separation applications for C2H2/CO2, C2H6/C2H4, and C3H8/C3H6. Thec/aratio of the hexagonal cell, a measure of pore shape, is tunable from 0.612 to 1.258. Other tunable properties include pore size from 5.0 to 10.9 Å and surface area from 820 to 2964 m2g−1. With C2H2/CO2selectivity from 3.3 to 11 and high uptake capacity for C2H2from 65.2 to 182 cm3g−1(298K, 1 bar), an efficient separation is confirmed by breakthrough experiments. The near‐record high uptake for C2H6(166.8 cm3g−1) contributes to the promise for C2H6‐selective separation of C2H6/C2H4. The multi‐module pore expansion enables transition from C3H6‐selective to more desirable C3H8‐selective separation with extraordinarily high C3H8uptake (254.9 cm3g−1) and high separation potential (1.25 mmol g−1) for C3H8/C3H6(50:50 v/v) mixture. 
    more » « less