skip to main content


Title: Time-Dependent Shortest Path Problems with Penalties and Limits on Waiting
Waiting at the right location at the right time can be critically important in certain variants of time-dependent shortest path problems. We investigate the computational complexity of time-dependent shortest path problems in which there is either a penalty on waiting or a limit on the total time spent waiting at a given subset of the nodes. We show that some cases are nondeterministic polynomial-time hard, and others can be solved in polynomial time, depending on the choice of the subset of nodes, on whether waiting is penalized or constrained, and on the magnitude of the penalty/waiting limit parameter. Summary of Contributions: This paper addresses simple yet relevant extensions of a fundamental problem in Operations Research: the Shortest Path Problem (SPP). It considers time-dependent variants of SPP, which can account for changing traffic and/or weather conditions. The first variant that is tackled allows for waiting at certain nodes but at a cost. The second variant instead places a limit on the total waiting. Both variants have applications in transportation, e.g., when it is possible to wait at certain locations if the benefits outweigh the costs. The paper investigates these problems using complexity analysis and algorithm design, both tools from the field of computing. Different cases are considered depending on which of the nodes contribute to the waiting cost or waiting limit (all nodes, all nodes except the origin, a subset of nodes…). The computational complexity of all cases is determined, providing complexity proofs for the variants that are NP-Hard and polynomial time algorithms for the variants that are in P.  more » « less
Award ID(s):
1662848
NSF-PAR ID:
10226532
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
INFORMS Journal on Computing
ISSN:
1091-9856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a variant of the vehicle routing problem (VRP) where each customer has a unit demand and the goal is to minimize the total cost of routing a fleet of capacitated vehicles from one or multiple depots to visit all customers. We propose two parallel algorithms to efficiently solve the column-generation-based linear-programming relaxation for this VRP. Specifically, we focus on algorithms for the “pricing problem,” which corresponds to the resource-constrained elementary shortest path problem. The first algorithm extends the pulse algorithm for which we derive a new bounding scheme on the maximum load of any route. The second algorithm is based on random coloring from parameterized complexity which can be also combined with other techniques in the literature for improving VRPs, including cutting planes and column enumeration. We conduct numerical studies using VRP benchmarks (with 50–957 nodes) and instances of a medical home care delivery problem using census data in Wayne County, Michigan. Using parallel computing, both pulse and random coloring can significantly improve column generation for solving the linear programming relaxations and we can obtain heuristic integer solutions with small optimality gaps. Combining random coloring with column enumeration, we can obtain improved integer solutions having less than 2% optimality gaps for most VRP benchmark instances and less than 1% optimality gaps for the medical home care delivery instances, both under a 30-minute computational time limit. The use of cutting planes (e.g., robust cuts) can further reduce optimality gaps on some hard instances, without much increase in the run time. Summary of Contribution: The vehicle routing problem (VRP) is a fundamental combinatorial problem, and its variants have been studied extensively in the literature of operations research and computer science. In this paper, we consider general-purpose algorithms for solving VRPs, including the column-generation approach for the linear programming relaxations of the integer programs of VRPs and the column-enumeration approach for seeking improved integer solutions. We revise the pulse algorithm and also propose a random-coloring algorithm that can be used for solving the elementary shortest path problem that formulates the pricing problem in the column-generation approach. We show that the parallel implementation of both algorithms can significantly improve the performance of column generation and the random coloring algorithm can improve the solution time and quality of the VRP integer solutions produced by the column-enumeration approach. We focus on algorithmic design for VRPs and conduct extensive computational tests to demonstrate the performance of various approaches. 
    more » « less
  2. With the advent of Network Function Virtualization (NFV), Physical Network Functions (PNFs) are gradually being replaced by Virtual Network Functions (VNFs) that are hosted on general purpose servers. Depending on the call flows for specific services, the packets need to pass through an ordered set of network functions (physical or virtual) called Service Function Chains (SFC) before reaching the destination. Conceivably for the next few years during this transition, these networks would have a mix of PNFs and VNFs, which brings an interesting mix of network problems that are studied in this paper: (1) How to find an SFC-constrained shortest path between any pair of nodes? (2) What is the achievable SFC-constrained maximum flow? (3) How to place the VNFs such that the cost (the number of nodes to be virtualized) is minimized, while the maximum flow of the original network can still be achieved even under the SFC constraint? In this work, we will try to address such emerging questions. First, for the SFC-constrained shortest path problem, we propose a transformation of the network graph to minimize the computational complexity of subsequent applications of any shortest path algorithm. Second, we formulate the SFC-constrained maximum flow problem as a fractional multicommodity flow problem, and develop a combinatorial algorithm for a special case of practical interest. Third, we prove that the VNFs placement problem is NP-hard and present an alternative Integer Linear Programming (ILP) formulation. Finally, we conduct simulations to elucidate our theoretical results. 
    more » « less
  3. Hazay, Carmit ; Stam, Martijn (Ed.)
    We study the computational problem of finding a shortest non-zero vector in a rotation of ℤ𝑛 , which we call ℤ SVP. It has been a long-standing open problem to determine if a polynomial-time algorithm for ℤ SVP exists, and there is by now a beautiful line of work showing how to solve it efficiently in certain very special cases. However, despite all of this work, the fastest known algorithm that is proven to solve ℤ SVP is still simply the fastest known algorithm for solving SVP (i.e., the problem of finding shortest non-zero vectors in arbitrary lattices), which runs in 2𝑛+𝑜(𝑛) time. We therefore set aside the (perhaps impossible) goal of finding an efficient algorithm for ℤ SVP and instead ask what else we can say about the problem. E.g., can we find any non-trivial speedup over the best known SVP algorithm? And, if ℤ SVP actually is hard, then what consequences would follow? Our results are as follows. We show that ℤ SVP is in a certain sense strictly easier than SVP on arbitrary lattices. In particular, we show how to reduce ℤ SVP to an approximate version of SVP in the same dimension (in fact, even to approximate unique SVP, for any constant approximation factor). Such a reduction seems very unlikely to work for SVP itself, so we view this as a qualitative separation of ℤ SVP from SVP. As a consequence of this reduction, we obtain a 2𝑛/2+𝑜(𝑛) -time algorithm for ℤ SVP, i.e., the first non-trivial speedup over the best known algorithm for SVP on general lattices. (In fact, this reduction works for a more general class of lattices—semi-stable lattices with not-too-large 𝜆1 .) We show a simple public-key encryption scheme that is secure if (an appropriate variant of) ℤ SVP is actually hard. Specifically, our scheme is secure if it is difficult to distinguish (in the worst case) a rotation of ℤ𝑛 from either a lattice with all non-zero vectors longer than 𝑛/log𝑛‾‾‾‾‾‾‾√ or a lattice with smoothing parameter significantly smaller than the smoothing parameter of ℤ𝑛 . The latter result has an interesting qualitative connection with reverse Minkowski theorems, which in some sense say that “ℤ𝑛 has the largest smoothing parameter.” We show a distribution of bases 𝐁 for rotations of ℤ𝑛 such that, if ℤ SVP is hard for any input basis, then ℤ SVP is hard on input 𝐁 . This gives a satisfying theoretical resolution to the problem of sampling hard bases for ℤ𝑛 , which was studied by Blanks and Miller [9]. This worst-case to average-case reduction is also crucially used in the analysis of our encryption scheme. (In recent independent work that appeared as a preprint before this work, Ducas and van Woerden showed essentially the same thing for general lattices [15], and they also used this to analyze the security of a public-key encryption scheme. Similar ideas also appeared in [5, 11, 20] in different contexts.) We perform experiments to determine how practical basis reduction performs on bases of ℤ𝑛 that are generated in different ways and how heuristic sieving algorithms perform on ℤ𝑛 . Our basis reduction experiments complement and add to those performed by Blanks and Miller, as we work with a larger class of algorithms (i.e., larger block sizes) and study the “provably hard” distribution of bases described above. Our sieving experiments confirm that heuristic sieving algorithms perform as expected on ℤ𝑛 . 
    more » « less
  4. null (Ed.)
    This paper introduces and studies a graph-based variant of the path planning problem arising in hostile environments. We consider a setting where an agent (e.g. a robot) must reach a given destination while avoiding being intercepted by probabilistic entities which exist in the graph with a given probability and move according to a probabilistic motion pattern known a priori. Given a goal vertex and a deadline to reach it, the agent must compute the path to the goal that maximizes its chances of survival. We study the computational complexity of the problem, and present two algorithms for computing high quality solutions in the general case: an exact algorithm based on Mixed-Integer Nonlinear Programming, working well in instances of moderate size, and a pseudo-polynomial time heuristic algorithm allowing to solve large scale problems in reasonable time. We also consider the two limit cases where the agent can survive with probability 0 or 1, and provide specialized algorithms to detect these kinds of situations more efficiently. 
    more » « less
  5. null (Ed.)
    Many program analyses need to reason about pairs of matching actions, such as call/return, lock/unlock, or set-field/get-field. The family of Dyck languages { D k }, where D k has k kinds of parenthesis pairs, can be used to model matching actions as balanced parentheses. Consequently, many program-analysis problems can be formulated as Dyck-reachability problems on edge-labeled digraphs. Interleaved Dyck-reachability (InterDyck-reachability), denoted by D k ⊙ D k -reachability, is a natural extension of Dyck-reachability that allows one to formulate program-analysis problems that involve multiple kinds of matching-action pairs. Unfortunately, the general InterDyck-reachability problem is undecidable. In this paper, we study variants of InterDyck-reachability on bidirected graphs , where for each edge ⟨ p , q ⟩ labeled by an open parenthesis ”( a ”, there is an edge ⟨ q , p ⟩ labeled by the corresponding close parenthesis ”) a ”, and vice versa . Language-reachability on a bidirected graph has proven to be useful both (1) in its own right, as a way to formalize many program-analysis problems, such as pointer analysis, and (2) as a relaxation method that uses a fast algorithm to over-approximate language-reachability on a directed graph. However, unlike its directed counterpart, the complexity of bidirected InterDyck-reachability still remains open. We establish the first decidable variant (i.e., D 1 ⊙ D 1 -reachability) of bidirected InterDyck-reachability. In D 1 ⊙ D 1 -reachability, each of the two Dyck languages is restricted to have only a single kind of parenthesis pair. In particular, we show that the bidirected D 1 ⊙ D 1 problem is in PTIME. We also show that when one extends each Dyck language to involve k different kinds of parentheses (i.e., D k ⊙ D k -reachability with k ≥ 2), the problem is NP-hard (and therefore much harder). We have implemented the polynomial-time algorithm for bidirected D 1 ⊙ D 1 -reachability. D k ⊙ D k -reachability provides a new over-approximation method for bidirected D k ⊙ D k -reachability in the sense that D k ⊙ D k -reachability can first be relaxed to bidirected D 1 ⊙ D 1 -reachability, and then the resulting bidirected D 1 ⊙ D 1 -reachability problem is solved precisely. We compare this D 1 ⊙ D 1 -reachability-based approach against another known over-approximating D k ⊙ D k -reachability algorithm. Surprisingly, we found that the over-approximation approach based on bidirected D 1 ⊙ D 1 -reachability computes more precise solutions, even though the D 1 ⊙ D 1 formalism is inherently less expressive than the D k ⊙ D k formalism. 
    more » « less