skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time-Dependent Shortest Path Problems with Penalties and Limits on Waiting
Waiting at the right location at the right time can be critically important in certain variants of time-dependent shortest path problems. We investigate the computational complexity of time-dependent shortest path problems in which there is either a penalty on waiting or a limit on the total time spent waiting at a given subset of the nodes. We show that some cases are nondeterministic polynomial-time hard, and others can be solved in polynomial time, depending on the choice of the subset of nodes, on whether waiting is penalized or constrained, and on the magnitude of the penalty/waiting limit parameter. Summary of Contributions: This paper addresses simple yet relevant extensions of a fundamental problem in Operations Research: the Shortest Path Problem (SPP). It considers time-dependent variants of SPP, which can account for changing traffic and/or weather conditions. The first variant that is tackled allows for waiting at certain nodes but at a cost. The second variant instead places a limit on the total waiting. Both variants have applications in transportation, e.g., when it is possible to wait at certain locations if the benefits outweigh the costs. The paper investigates these problems using complexity analysis and algorithm design, both tools from the field of computing. Different cases are considered depending on which of the nodes contribute to the waiting cost or waiting limit (all nodes, all nodes except the origin, a subset of nodes…). The computational complexity of all cases is determined, providing complexity proofs for the variants that are NP-Hard and polynomial time algorithms for the variants that are in P.  more » « less
Award ID(s):
1662848
PAR ID:
10226532
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
INFORMS Journal on Computing
ISSN:
1091-9856
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the advent of Network Function Virtualization (NFV), Physical Network Functions (PNFs) are gradually being replaced by Virtual Network Functions (VNFs) that are hosted on general purpose servers. Depending on the call flows for specific services, the packets need to pass through an ordered set of network functions (physical or virtual) called Service Function Chains (SFC) before reaching the destination. Conceivably for the next few years during this transition, these networks would have a mix of PNFs and VNFs, which brings an interesting mix of network problems that are studied in this paper: (1) How to find an SFC-constrained shortest path between any pair of nodes? (2) What is the achievable SFC-constrained maximum flow? (3) How to place the VNFs such that the cost (the number of nodes to be virtualized) is minimized, while the maximum flow of the original network can still be achieved even under the SFC constraint? In this work, we will try to address such emerging questions. First, for the SFC-constrained shortest path problem, we propose a transformation of the network graph to minimize the computational complexity of subsequent applications of any shortest path algorithm. Second, we formulate the SFC-constrained maximum flow problem as a fractional multicommodity flow problem, and develop a combinatorial algorithm for a special case of practical interest. Third, we prove that the VNFs placement problem is NP-hard and present an alternative Integer Linear Programming (ILP) formulation. Finally, we conduct simulations to elucidate our theoretical results. 
    more » « less
  2. null (Ed.)
    This paper introduces and studies a graph-based variant of the path planning problem arising in hostile environments. We consider a setting where an agent (e.g. a robot) must reach a given destination while avoiding being intercepted by probabilistic entities which exist in the graph with a given probability and move according to a probabilistic motion pattern known a priori. Given a goal vertex and a deadline to reach it, the agent must compute the path to the goal that maximizes its chances of survival. We study the computational complexity of the problem, and present two algorithms for computing high quality solutions in the general case: an exact algorithm based on Mixed-Integer Nonlinear Programming, working well in instances of moderate size, and a pseudo-polynomial time heuristic algorithm allowing to solve large scale problems in reasonable time. We also consider the two limit cases where the agent can survive with probability 0 or 1, and provide specialized algorithms to detect these kinds of situations more efficiently. 
    more » « less
  3. Guruswami, Venkatesan (Ed.)
    Generalizing work of Künnemann, Paturi, and Schneider [ICALP 2017], we study a wide class of high-dimensional dynamic programming (DP) problems in which one must find the shortest path between two points in a high-dimensional grid given a tensor of transition costs between nodes in the grid. This captures many classical problems which are solved using DP such as the knapsack problem, the airplane refueling problem, and the minimal-weight polygon triangulation problem. We observe that for many of these problems, the tensor naturally has low tensor rank or low slice rank. We then give new algorithms and a web of fine-grained reductions to tightly determine the complexity of these problems. For instance, we show that a polynomial speedup over the DP algorithm is possible when the tensor rank is a constant or the slice rank is 1, but that such a speedup is impossible if the tensor rank is slightly super-constant (assuming SETH) or the slice rank is at least 3 (assuming the APSP conjecture). We find that this characterizes the known complexities for many of these problems, and in some cases leads to new faster algorithms. 
    more » « less
  4. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    We present polylogarithmic approximation algorithms for variants of the Shortest Path, Group Steiner Tree, and Group ATSP problems with vector costs. In these problems, each edge e has a vector cost c_e ∈ ℝ_{≥0}^𝓁;. For a feasible solution - a path, subtree, or tour (respectively) - we find the total vector cost of all the edges in the solution and then compute the 𝓁_p-norm of the obtained cost vector (we assume that p ≥ 1 is an integer). Our algorithms for series-parallel graphs run in polynomial time and those for arbitrary graphs run in quasi-polynomial time. To obtain our results, we introduce and use new flow-based Sum-of-Squares relaxations. We also obtain a number of hardness results. 
    more » « less
  5. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    In the k-Disjoint Shortest Paths (k-DSP) problem, we are given a graph G (with positive edge weights) on n nodes and m edges with specified source vertices s_1, … , s_k, and target vertices t_1, … , t_k, and are tasked with determining if G contains vertex-disjoint (s_i,t_i)-shortest paths. For any constant k, it is known that k-DSP can be solved in polynomial time over undirected graphs and directed acyclic graphs (DAGs). However, the exact time complexity of k-DSP remains mysterious, with large gaps between the fastest known algorithms and best conditional lower bounds. In this paper, we obtain faster algorithms for important cases of k-DSP, and present better conditional lower bounds for k-DSP and its variants. Previous work solved 2-DSP over weighted undirected graphs in O(n⁷) time, and weighted DAGs in O(mn) time. For the main result of this paper, we present optimal linear time algorithms for solving 2-DSP on weighted undirected graphs and DAGs. Our linear time algorithms are algebraic however, and so only solve the detection rather than search version of 2-DSP (we show how to solve the search version in O(mn) time, which is faster than the previous best runtime in weighted undirected graphs, but only matches the previous best runtime for DAGs). We also obtain a faster algorithm for k-Edge Disjoint Shortest Paths (k-EDSP) in DAGs, the variant of k-DSP where one seeks edge-disjoint instead of vertex-disjoint paths between sources and their corresponding targets. Algorithms for k-EDSP on DAGs from previous work take Ω(m^k) time. We show that k-EDSP can be solved over DAGs in O(mn^{k-1}) time, matching the fastest known runtime for solving k-DSP over DAGs. Previous work established conditional lower bounds for solving k-DSP and its variants via reductions from detecting cliques in graphs. Prior work implied that k-Clique can be reduced to 2k-DSP in DAGs and undirected graphs with O((kn)²) nodes. We improve this reduction, by showing how to reduce from k-Clique to k-DSP in DAGs and undirected graphs with O((kn)²) nodes (halving the number of paths needed in the reduced instance). A variant of k-DSP is the k-Disjoint Paths (k-DP) problem, where the solution paths no longer need to be shortest paths. Previous work reduced from k-Clique to p-DP in DAGs with O(kn) nodes, for p = k + k(k-1)/2. We improve this by showing a reduction from k-Clique to p-DP, for p = k + ⌊k²/4⌋. Under the k-Clique Hypothesis from fine-grained complexity, our results establish better conditional lower bounds for k-DSP for all k ≥ 4, and better conditional lower bounds for p-DP for all p ≤ 4031. Notably, our work gives the first nontrivial conditional lower bounds 4-DP in DAGs and 4-DSP in undirected graphs and DAGs. Before our work, nontrivial conditional lower bounds were only known for k-DP and k-DSP on such graphs when k ≥ 6. 
    more » « less