We study the labeled multi-robot path planning problem in continuous 2D and 3D domains in the absence of obstacles where robots must not collide with each other. For an arbitrary number of robots in arbitrary initial and goal arrangements, we derive a polynomial time, complete algorithm that produces solutions with constant-factor optimality guarantees on both makespan and distance optimality, in expectation, under the assumption that the robot labels are uniformly randomly distributed. Our algorithm only requires a small constant-factor expansion of the initial and goal configuration footprints for solving the problem, i.e., the problem can be solved in a fairly small bounded region. Beside theoretical guarantees, we present a thorough computational evaluation of the proposed solution. In addition to the baseline implementation, adapting an effective (but non-polynomial time) routing subroutine, we also provide a highly efficient implementation that quickly computes near-optimal solutions. Hardware experiments on the microMVP platform composed of non-holonomic robots confirms the practical applicability of our algorithmic pipeline.
more »
« less
Interval-Based Dynamic Discretization Discovery for Solving the Continuous-Time Service Network Design Problem
We introduce an effective and efficient iterative algorithm for solving the continuous-time service network design problem. The algorithm achieves its efficiency by carefully and dynamically refining partially time-expanded network models so that only a small number of small integer programs, defined over these networks, need to be solved. An extensive computational study shows that the algorithm performs well in practice, often using time-expanded network models with size much less than 1% (in terms of number of variables and constraints) of a full time-expanded network model. The algorithm is inspired by and has many similarities to the dynamic discretization discovery algorithm introduced in Boland et al. [Boland N, Hewitt M, Marshall L, Savelsbergh M (2017) The continuous-time service network design problem. Oper. Res. 65(5):1303–1321.], but generates smaller partially time-expanded models, produces high-quality solutions more quickly, and converges more quickly.
more »
« less
- Award ID(s):
- 1662848
- PAR ID:
- 10226533
- Date Published:
- Journal Name:
- Transportation Science
- Volume:
- 55
- Issue:
- 1
- ISSN:
- 0041-1655
- Page Range / eLocation ID:
- 29 to 51
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present an exact algorithm for the Minimum Duration Time-Dependent Shortest Path Problem with piecewise linear arc travel time functions. The algorithm iteratively refines a time-expanded network model, which allows for the computation of a lower and an upper bound, until - in a finite number of iterations - an optimal solution is obtained.more » « less
-
Given a graph G = (V, E) and a subset T ⊆ V of terminals, a Steiner tree of G is a tree that spans T. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a minimum weight Steiner tree of G. Vertex-weighted problems have applications in network design and routing, where there are different costs for installing or maintaining facilities at different vertices. We study a natural generalization of the VST problem motivated by multi-level graph construction, the vertex-weighted grade-of-service Steiner tree problem (V-GSST), which can be stated as follows: given a graph G and terminals T, where each terminal v ∈ T requires a facility of a minimum grade of service R(v) ∈ {1, 2, . . . `}, compute a Steiner tree G0 by installing facilities on a subset of vertices, such that any two vertices requiring a certain grade of service are connected by a path in G 0 with the minimum grade of service or better. Facilities of higher grade are more costly than facilities of lower grade. Multi-level variants such as this one can be useful in network design problems where vertices may require facilities of varying priority. While similar problems have been studied in the edge-weighted case, they have not been studied as well in the more general vertex-weighted case. We first describe a simple heuristic for the V-GSST problem whose approximation ratio depends on `, the number of grades of service. We then generalize the greedy algorithm of [Klein & Ravi, 1995] to show that the V-GSST problem admits a (2 ln |T|)-approximation, where T is the set of terminals requiring some facility. This result is surprising, as it shows that the (seemingly harder) multi-grade problem can be approximated as well as the VST problem, and that the approximation ratio does not depend on the number of grades of service. Finally, we show that this problem is a special case of the directed Steiner tree problem and provide an integer linear programming (ILP) formulation for the V-GSST problem.more » « less
-
The growing popularity of bike-sharing systems around the world has motivated recent attention to models and algorithms for their effective operation. Most of this literature focuses on their daily operation for managing asymmetric demand. In this work, we consider the more strategic question of how to (re)allocate dock-capacity in such systems. We develop mathematical formulations for variations of this problem (either for service performance over the course of one day or for a long-run-average) and exhibit discrete convex properties in associated optimization problems. This allows us to design a polynomial-time allocation algorithm to compute an optimal solution for this problem, which can also handle practically motivated constraints, such as a limit on the number of docks moved in the system. We apply our algorithm to data sets from Boston, New York City, and Chicago to investigate how different dock allocations can yield better service in these systems. Recommendations based on our analysis have led to changes in the system design in Chicago and New York City. Beyond optimizing for improved quality of service through better allocations, our results also provide a metric to compare the impact of strategically reallocating docks and the daily rebalancing of bikes.more » « less
-
null (Ed.)Abstract Average lifetime, or mean time to failure (MTTF), of a product is an important metric to measure the product reliability. Current methods of evaluating MTTF are mainly statistics or data based. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict MTTF in the design stage by means of physics-based models. The advantage is that the design can be continually improved by changing design variables until reliability measures, including MTTF, are satisfied. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). We develop an adaptive supervised training method based on Gaussian process regression, and the method can then quickly predict MTTF with minimized number of calling the physics-based models. The effectiveness of the method is demonstrated by two examples.more » « less