Average lifetime, or mean time to failure (MTTF), of a product is an important metric to measure the product reliability. Current methods of evaluating MTTF are mainly statistics or data based. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict MTTF in the design stage by means of physics-based models. The advantage is that the design can be continually improved by changing design variables until reliability measures, including MTTF, are satisfied. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). We develop an adaptive supervised training method based on Gaussian process regression, and the method can then quickly predict MTTF with minimized number of calling the physics-based models. The effectiveness of the method is demonstrated by two examples.
more » « less- Award ID(s):
- 1923799
- PAR ID:
- 10247930
- Date Published:
- Journal Name:
- Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
- Volume:
- 11B
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract The average lifetime or the mean time to failure (MTTF) of a product is an important metric to measure the product reliability. Current methods of evaluating the MTTF are mainly based on statistics or data. They need lifetime testing on a number of products to get the lifetime samples, which are then used to estimate the MTTF. The lifetime testing, however, is expensive in terms of both time and cost. The efficiency is also low because it cannot be effectively incorporated in the early design stage where many physics-based models are available. We propose to predict the MTTF in the design stage by means of a physics-based Gaussian process (GP) method. Since the physics-based models are usually computationally demanding, we face a problem with both big data (on the model input side) and small data (on the model output side). The proposed adaptive supervised training method with the Gaussian process regression can quickly predict the MTTF with a reduced number of physical model calls. The proposed method can enable continually improved design by changing design variables until reliability measures, including the MTTF, are satisfied. The effectiveness of the method is demonstrated by three examples.more » « less
-
Base metal electrode (BME) multilayer ceramic capacitors (MLCCs) are widely used in aerospace, medical, military, and communication applications, emphasizing the need for high reliability. The ongoing advancements in BaTiO3-based MLCC technology have facilitated further miniaturization and improved capacitive volumetric density for both low and high voltage devices. However, concerns persist regarding infant mortality failures and long-term reliability under higher fields and temperatures. To address these concerns, a comprehensive understanding of the mechanisms underlying insulation resistance degradation is crucial. Furthermore, there is a need to develop effective screening procedures during MLCC production and improve the accuracy of mean time to failure (MTTF) predictions. This article reviews our findings on the effect of the burn-in test, a common quality control process, on the dynamics of oxygen vacancies within BME MLCCs. These findings reveal the burn-in test has a negative impact on the lifetime and reliability of BME MLCCS. Moreover, the limitations of existing lifetime prediction models for BME MLCCs are discussed, emphasizing the need for improved MTTF predictions by employing a physics-based machine learning model to overcome the existing models’ limitations. The article also discusses the new physical-based machine learning model that has been developed. While data limitations remain a challenge, the physics-based machine learning approach offers promising results for MTTF prediction in MLCCs, contributing to improved lifetime predictions. Furthermore, the article acknowledges the limitations of relying solely on MTTF to predict MLCCs’ lifetime and emphasizes the importance of developing comprehensive prediction models that predict the entire distribution of failures.more » « less
-
Multilayer ceramic capacitors (MLCC) play a vital role in electronic systems, and their reliability is of critical importance. The ongoing advancement in MLCC manufacturing has improved capacitive volumetric density for both low and high voltage devices; however, concerns about long-term stability under higher fields and temperatures are always a concern, which impact their reliability and lifespan. Consequently, predicting the mean time to failure (MTTF) for MLCCs remains a challenge due to the limitations of existing models. In this study, we develop a physics-based machine learning approach using the eXtreme Gradient Boosting method to predict the MTTF of X7R MLCCs under various temperature and voltage conditions. We employ a transfer learning framework to improve prediction accuracy for test conditions with limited data and to provide predictions for test conditions where no experimental data exists. We compare our model with the conventional Eyring model (EM) and, more recently, the tipping point model (TPM) in terms of accuracy and performance. Our results show that the machine learning model consistently outperforms both the EM and TPM, demonstrating superior accuracy and stability across different conditions. Our model also exhibits a reliable performance for untested voltage and temperature conditions, making it a promising approach for predicting MTTF in MLCCs.
-
Traditional accelerated life test plans are typically based on optimizing the C-optimality for minimizing the variance of an interested quantile of the lifetime distribution. These methods often rely on some specified planning values for the model parameters, which are usually unknown prior to the actual tests. The ambiguity of the specified parameters can lead to suboptimal designs for optimizing the reliability performance of interest. In this paper, we propose a sequential design strategy for life test plans based on considering dual objectives. In the early stage of the sequential experiment, we suggest allocating more design locations based on optimizing the D-optimality to quickly gain precision in the estimated model parameters. In the later stage of the experiment, we can allocate more observations based on optimizing the C-optimality to maximize the precision of the estimated quantile of the lifetime distribution. We compare the proposed sequential design strategy with existing test plans considering only a single criterion and illustrate the new method with an example on the fatigue testing of polymer composites.more » « less
-
Abstract Predicting system reliability is often a core task in systems design. System reliability depends on component reliability and dependence of components. Component reliability can be predicted with a physics-based approach if the associated physical models are available. If the models do not exist, component reliability may be estimated from data. When both types of components coexist, their dependence is often unknown, and therefore, the component states are assumed independent by the traditional method, which can result in a large error. This study proposes a new system reliability method to recover the missing component dependence, thereby leading to a more accurate estimate of the joint probability density function (PDF) of all the component states. The method works for series systems whose load is shared by its components that may fail due to excessive loading. For components without physical models available, the load data are recorded upon failure, and equivalent physical models are created; the model parameters are estimated by the proposed Bayesian approach. Then models of all component states become available, and the dependence of component states, as well as their joint PDF, can be estimated. Four examples are used to evaluate the proposed method, and the results indicate that the method can produce more accurate predictions of system reliability than the traditional method that assumes independent component states.more » « less