skip to main content


Title: Integration of highly anisotropic multiferroic BaTiO 3 –Fe nanocomposite thin films on Si towards device applications
Integration of highly anisotropic multiferroic thin films on silicon substrates is a critical step towards low-cost devices, especially high-speed and low-power consumption memories. In this work, an oxide–metal vertically aligned nanocomposite (VAN) platform has been used to successfully demonstrate self-assembled multiferroic BaTiO 3 –Fe (BTO–Fe) nanocomposite films with high structural anisotropy on Si substrates. The effects of various buffer layers on the crystallinity, microstructure, and physical properties of the BTO–Fe films have been explored. With an appropriate buffer layer design, e.g. SrTiO 3 /TiN bilayer buffer, the epitaxial quality of the BTO matrix and the anisotropy of the Fe nanopillars can be improved greatly, which in turn enhances the physical properties, including the ferromagnetic, ferroelectric, and optical response of the BTO–Fe thin films. This unique combination of properties integrated on Si offers a promising approach in the design of multifunctional nanocomposites for Si-based memories and optical devices.  more » « less
Award ID(s):
2016453 1565822
NSF-PAR ID:
10226856
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
2
Issue:
9
ISSN:
2516-0230
Page Range / eLocation ID:
4172 to 4178
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bi 3 MoM T O 9 (BMoM T O; M T , transition metals of Mn, Fe, Co and Ni) thin films with a layered supercell structure have been deposited on LaAlO 3 (001) substrates by pulsed laser deposition. Microstructural analysis suggests that pillar-like domains with higher transition metal concentration ( e.g. , Mn, Fe, Co and Ni) are embedded in the Mo-rich matrix with layered supercell structures. The layered supercell structure of the BMoM T O thin films accounts for the anisotropic multifunctionalities such as the magnetic easy axis along the in-plane direction, and the anisotropic optical properties. Ferroelectricity and ferromagnetism have been demonstrated in the thin films at room temperature, which confirms the multiferroic nature of the system. By varying the transition metal M T in the film, the band gaps of the BMoM T O films can be effectively tuned from 2.44 eV to 2.82 eV, while the out-of-plane dielectric constant of the thin films also varies. The newly discovered layered nanocomposite systems present their potential in ferroelectrics, multiferroics and non-linear optics. 
    more » « less
  2. Transition metal nitrides such as titanium nitride (TiN) possess exceptional mechanical-, chemical-, and thermal-stability and have been utilized in a wide variety of applications ranging from super-hard, corrosion-resistive, and decorative coatings to nanoscale diffusion barriers in semiconductor devices. Despite the ongoing interest in these robust materials, there have been limited reports focused on engineering high-aspect ratio TiN-based nanocomposites with anisotropic magnetic and optical properties. To this end, we explored TiN–Fe thin films with self-assembled vertical structures integrated on Si substrates. We showed that the key physical properties of the individual components (e.g., ferromagnetism from Fe) are preserved, that vertical nanostructures promote anisotropic behavior, and interactions between TiN and Fe enable a special magneto-optical response. This TiN–Fe nanocomposite system presents a new group of complex multifunctional hybrid materials that can be integrated on Si for future Si-based memory, optical, and biocompatible devices. 
    more » « less
  3. null (Ed.)
    A new two-phase BaTiO 3  : La 0.7 Sr 0.3 MnO 3 nanocomposite system with a molar ratio of 8 : 2 has been grown on single crystal SrTiO 3 (001) substrates using a one-step pulsed laser deposition technique. Vertically aligned nanocomposite thin films with ultra-thin La 0.7 Sr 0.3 MnO 3 pillars embedded in the BaTiO 3 matrix have been obtained and the geometry of the pillars varies with deposition frequency. The room temperature multiferroic properties, including ferromagnetism and ferroelectricity, have been demonstrated. Anisotropic ferromagnetism and dielectric constants have been observed, which can be tuned by deposition frequencies. The tunable anisotropic optical properties originated from the conducting pillars in the dielectric matrix structure, which cause different electron transport paths. In addition, tunable band gaps have been discovered in the nanocomposites. This multiferroic and anisotropic system has shown its great potentials towards multiferroics and non-linear optics. 
    more » « less
  4. Abstract

    Metamaterials have gained great research interest in recent years owing to their potential for property tunability, multifunctionality, and property coupling. As a new group of self‐assembled thin films, vertically aligned nanocomposite (VAN)‐based hybrid metamaterials have been demonstrated with significant anisotropic physical properties and a broad range of property tailorability, such as optical anisotropy, magnetic anisotropy, hyperbolic dispersion, and enhanced second harmonic generation properties. Herein, self‐assembled ZrO2‐Co nanocomposite films, with high epitaxial quality and ultra‐fine vertically aligned Co nanopillars (with an average diameter of ≈2 nm) embedded in a ZrO2matrix, are fabricated using a pulsed laser deposition (PLD) method. The Co pillar density can be effectively tuned by varying the Co concentration in the target, which results in tunable optical properties and magnetic properties. Specifically, a high saturation magnetization of 100 emu cm−3, strong out‐of‐plane magnetic anisotropy and tailorable magnetization properties are achieved via tuning the Co nanopillar density. Coupled with hyperbolic dispersion of dielectric constant from 950 to 1500 nm in wavelength, plasmonic Co metal nanopillars, and the unique dielectric ZrO2matrix, this new nanoscale hybrid metamaterial shows great potential for future integrated optical and magnetic device designs.

     
    more » « less
  5. Oxide-metal-based hybrid materials have gained great research interest in recent years owing to their potential for multifunctionality, property coupling, and tunability. Specifically, oxide-metal hybrid materials in a vertically aligned nanocomposite (VAN) form could produce pronounced anisotropic physical properties, e.g. , hyperbolic optical properties. Herein, self-assembled HfO 2 -Au nanocomposites with ultra-fine vertically aligned Au nanopillars (as fine as 3 nm in diameter) embedded in a HfO 2 matrix were fabricated using a one-step self-assembly process. The film crystallinity and pillar uniformity can be obviously improved by adding an ultra-thin TiN-Au buffer layer during the growth. The HfO 2 -Au hybrid VAN films show an obvious plasmonic resonance at 480 nm, which is much lower than the typical plasmonic resonance wavelength of Au nanostructures, and is attributed to the well-aligned ultra-fine Au nanopillars. Coupled with the broad hyperbolic dispersion ranging from 1050 nm to 1800 nm in wavelength, and unique dielectric HfO 2 , this nanoscale hybrid plasmonic metamaterial presents strong potential for the design of future integrated optical and electronic switching devices. 
    more » « less