Abstract Undirected C(sp3)−H functionalization reactions often follow site‐selectivity patterns that mirror the corresponding C−H bond dissociation energies (BDEs). This often results in the functionalization of weaker tertiary C−H bonds in the presence of stronger secondary and primary bonds. An important, contemporary challenge is the development of catalyst systems capable of selectively functionalizing stronger primary and secondary C−H bonds over tertiary and benzylic C−H sites. Herein, we report a Cu catalyst that exhibits a high degree of primary and secondary over tertiary C−H bond selectivity in the amidation of linear and cyclic hydrocarbons with aroyl azides ArC(O)N3. Mechanistic and DFT studies indicate that C−H amidation involves H‐atom abstraction from R‐H substrates by nitrene intermediates [Cu](κ2‐N,O‐NC(O)Ar) to provide carbon‐based radicals R.and copper(II)amide intermediates [CuII]‐NHC(O)Ar that subsequently capture radicals R.to form products R‐NHC(O)Ar. These studies reveal important catalyst features required to achieve primary and secondary C−H amidation selectivity in the absence of directing groups.
more »
« less
Mapping C−H⋅⋅⋅M Interactions in Confined Spaces: (α‐ICyD Me )Au, Ag, Cu Complexes Reveal “Contra‐electrostatic H Bonds” Masquerading as Anagostic Interactions**
Abstract What happens when a C−H bond is forced to interact with unpaired pairs of electrons at a positively charged metal? Such interactions can be considered as “contra‐electrostatic” H‐bonds, which combine the familiar orbital interaction pattern characteristic for the covalent contribution to the conventional H‐bonding with an unusual contra‐electrostatic component. While electrostatics is strongly stabilizing component in the conventional C−H⋅⋅⋅X bonds where X is an electronegative main group element, it is destabilizing in the C−H⋅⋅⋅M contacts when M is Au(I), Ag(I), or Cu(I) of NHC−M−Cl systems. Such remarkable C−H⋅⋅⋅M interaction became experimentally accessible within (α‐ICyDMe)MCl, NHC‐Metal complexes embedded into cyclodextrins. Computational analysis of the model systems suggests that the overall interaction energies are relatively insensitive to moderate variations in the directionality of interaction between a C−H bond and the metal center, indicating stereoelectronic promiscuity of fully filled set ofd‐orbitals. A combination of experimental and computational data demonstrates that metal encapsulation inside the cyclodextrin cavity forces the C−H bond to point toward the metal, and reveals a still attractive “contra‐electrostatic” H‐bonding interaction.
more »
« less
- Award ID(s):
- 1800329
- PAR ID:
- 10226913
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 27
- Issue:
- 31
- ISSN:
- 0947-6539
- Format(s):
- Medium: X Size: p. 8127-8142
- Size(s):
- p. 8127-8142
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The short C–H⋯S contacts found in available structural data for both small molecules and larger biomolecular systems suggest that such contacts are an often overlooked yet important stabilizing interaction. Moreover, many of these short C–H⋯S contacts meet the definition of a hydrogen bonding interaction. Using available structural data from the Cambridge Structural Database (CSD), as well as selected examples from the literature in which important C–H⋯S contacts may have been overlooked, we highlight the generality of C–H⋯S hydrogen bonding as an important stabilizing interaction. To uncover and establish the generality of these interactions, we compare C–H⋯S contacts with other traditional hydrogen bond donors and acceptors as well as investigate how coordination number and metal bonding affect the preferred geometry of interactions in the solid state. This work establishes that the C–H⋯S bond meets the definition of a hydrogen bond and serves as a guide to identify C–H⋯S hydrogen bonds in diverse systems.more » « less
-
null (Ed.)Hydrogen bonding plays a critical role in maintaining order and structure in complex biological and synthetic systems. N -heterocyclic carbenes (NHCs) represent one of the most versatile tools in the synthetic chemistry toolbox, yet their potential as neutral carbon hydrogen bond acceptors remains underexplored. This report investigates this capability in a strategic manner, wherein carbene-based hydrogen bonding can be assessed by use of ditopic NH -containing molecules. N–H bonds are unique as there are three established reaction modes with carbenes: non-traditional hydrogen bonding adducts (X–H⋯:C), salts arising from proton transfer ([H–C] + [X] − ), or amines from insertion of the carbene into the N–H bond. Yet, there are no established rules to predict product distributions or the strength of these associations. Here we seek to correlate the hydrogen bond strength of symmetric and asymmetric ditopic secondary amines with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene ( IPr , a representative NHC). In symmetric and asymmetric ditopic amine adducts both the solid-state (hydrogen bond lengths, NHC interior angles) and solution-state ( 1 H Δ δ of NH signals, 13 C signals of carbenic carbon) can be related to the p K a of the parent amine.more » « less
-
Abstract Multiple bonds between boron and transition metals are known in many borylene (:BR) complexes via metal dπ→BR back‐donation, despite the electron deficiency of boron. An electron‐precise metal–boron triple bond was first observed in BiB2O−[Bi≡B−B≡O]−in which both boron atoms can be viewed as sp‐hybridized and the [B−BO]−fragment is isoelectronic to a carbyne (CR). To search for the first electron‐precise transition‐metal‐boron triple‐bond species, we have produced IrB2O−and ReB2O−and investigated them by photoelectron spectroscopy and quantum‐chemical calculations. The results allow to elucidate the structures and bonding in the two clusters. We find IrB2O−has a closed‐shell bent structure (Cs,1A′) with BO−coordinated to an Ir≡B unit, (−OB)Ir≡B, whereas ReB2O−is linear (C∞v,3Σ−) with an electron‐precise Re≡B triple bond, [Re≡B−B≡O]−. The results suggest the intriguing possibility of synthesizing compounds with electron‐precise M≡B triple bonds analogous to classical carbyne systems.more » « less
-
Abstract As appreciation for nonclassical hydrogen bonds has progressively increased, so have efforts to characterize these interesting interactions. Whereas several kinds of C−H hydrogen bonds have been well‐studied, much less is known about the R3N+−C−H⋅⋅⋅X variety. Herein, we present crystallographic and spectroscopic evidence for the existence of these interactions, with special relevance to Selectfluor chemistry. Of particular note is the propensity for Lewis bases to engage in nonclassical hydrogen bonding over halogen bonding with the electrophilic F atom of Selectfluor. Further, the first examples of1H NMR experiments detailing R3N+−C−H⋅⋅⋅X (X=O, N) hydrogen bonds are described.more » « less
An official website of the United States government
